The following algorithm is the procedure to rate US Chess events. The procedure applies to five separate rating systems, three of which are for over-the-board (OTB) events, and two of which are for online events: the Blitz system, Quick Chess (QC) system, the Regular system, the online Blitz system, and the online Quick system. The two Blitz systems apply to events with time controls of G/5 (or G/3+2) to G/10+0. The two QC systems apply to events with time controls of G/10+0 through G/60+5. Regular events have time controls of G/25+5 or slower. The formulas apply to each system separately. Events having time controls between G/30 (or G/25+5) and G/60+5 are rated in both the Regular and QC systems (i.e., dual-rated).

Note that this document describes only how ratings are computed, and does not set the rules that govern their use.

1 Structure of the Rating Algorithm

Before an event, a player is either unrated, or has a rating based on $N$ games. Ratings are stored as floating point values, such as 1643.759 and 1431.034. Official ratings are expressed as rounded to the nearest whole number (1644 and 1431 in the above example). A player’s rating is termed “established” if it is based upon more than 25 games. Assume the player competes in $m$ games during the event. Post-event ratings are computed in a sequence of five steps:

- The first step sets temporary initial ratings for unrated players.
- The second step calculates an “effective” number of games played by each player.
• The third step calculates temporary estimates of ratings for certain unrated players only to be used when rating their opponents on the subsequent step.

• The fourth step then calculates intermediate ratings for all players.

• The fifth step uses these intermediate ratings from the previous step as estimates of opponents’ strengths to calculate final post-event ratings.

The calculations are carried out in the following manner:

**Step 1:** Set initial ratings for unrated players.

Initial rating estimates are set for all unrated players in an event. The purpose of setting initial rating estimates for unrated players is (1) to be able to incorporate information about a game result against an unrated player, and (2) to choose among equally plausible ratings during a rating calculation for an unrated player (see the details of the “special” rating formulas in Section 4.1).

The details of determining an initial rating for an unrated player are described in Section 2.

**Step 2:** Calculate the “effective” number of games played by each player.

This number, which is typically less than the actual number of games played, reflects the uncertainty in one’s rating, and is substantially smaller especially when the player’s rating is low. This value is used in the “special” and “standard” rating calculations. See Section 3 for the details of the computation.

**Step 3:** Calculate a first rating estimate for each unrated player for whom Step 1 gives $N = 0$. For these players, use the “special” rating formula (see Section 4.1), letting $R_0$ be the initialized rating. However, for only this step in the computation, set the number of effective games for these players to 1 (this is done to properly “center” the ratings when most or all of the players are previously unrated).

- If an opponent of the unrated player has a pre-event rating, use this rating in the rating formula.
- If an opponent of the unrated player is also unrated, then use the initialized rating from Step 1.

If the resulting rating from Step 3 for the unrated player is less than 100, then change the rating to 100.
Step 4: For every player, calculate an intermediate rating with the appropriate rating formula.

- If a player’s rating $R_0$ from Step 1 is based upon 8 or fewer games ($N \leq 8$), or if a player’s game outcomes in all previous events have been either all wins or all losses, then use the “special” rating formula (see Section 4.1), with “prior” rating $R_0$.

- If a player’s rating $R_0$ from Step 1 is based upon more than 8 games ($N > 8$), and has not been either all wins or all losses, use the “standard” rating formula (see Section 4.2). Note that the standard formula is used even if the “effective” number of games from Step 2 is less than or equal to 8.

In the calculations, use the opponents’ pre-event ratings in the computation (for players with pre-event ratings). For unrated opponents who are assigned $N = 0$ in Step 1, use the results of Step 3 for their ratings. For unrated opponents who are assigned $N > 0$ in Step 1, use their assigned rating from Step 1.

If the resulting rating from Step 4 is less than 100, then change the rating to 100.

Step 5: Repeat the calculations from Step 4 for every player, again using a player’s pre-event rating (or the assigned ratings from Step 1 for unrated players) to perform the calculation, but using the results of Step 4 for the opponents’ ratings. If the resulting rating from Step 5 is less than 100, then change the rating to 100.

These five steps result in the new set of post-event ratings for all players.

2 Initializing Ratings

The first step of the rating algorithm is to set initial ratings for all unrated players in an event. The procedure for initializing ratings depends on the specific system (Regular, QC, Blitz, online QC, online Blitz) in which the event is rated. The details of initializing ratings are described below, along with the details on initializing ratings from the FIDE rating system, from the CFC rating system, and based on age.

Note that if a player is US Chess-unrated in any system, has no FIDE or CFC rating, but has a foreign national rating in another system, the US Chess office may at their discretion determine a converted initial rating. In such a case, the rating is treated as based on having played 0 games ($N = 0$).
2.1 Initializing Regular ratings

Initial ratings for unrated US Chess players in Regular events are determined in the following order of priority.

1. If player has a FIDE rating, use the rating converted from the FIDE system (see below). The converted rating is based on having played 10 games \((N = 10)\) if the FIDE rating is over 2150, and based on having played 5 games \((N = 5)\) if the FIDE rating is 2150 or lower.

2. If the player has a CFC rating, use the rating converted from the CFC system (see below). The converted rating is based on having played 5 games \((N = 5)\) if the CFC rating is over 1500, and based on 0 games \((N = 0)\) if the CFC rating is 1500 or lower.

3. If the player has a QC rating based on at least 4 games, use the QC rating as the initial rating. This rating is treated as being based on 0 games \((N = 0)\).

4. Use an initialized rating as a function of the player’s age (see below). This rating is treated as based on 0 games \((N = 0)\).

5. Use an initial rating of 750 based on 0 games \((N = 0)\).

2.2 Initializing QC ratings

Initial ratings for unrated US Chess players in QC events are determined in the following order of priority.

1. If the player has a Regular rating based on at least 4 games, then use the Regular rating. The rating is treated as based on the lesser of 10 and the number of games on which the Regular rating itself is based \((N = 10 \text{ or } N = \text{ prior number of Regular games}, \text{ whichever is smaller})\).

2. If player has a FIDE rating, use the rating converted from the FIDE system (see below). The converted rating is based on having played 10 games \((N = 10)\) if the FIDE rating is over 2150, and based on having played 5 games \((N = 5)\) if the FIDE rating is 2150 or lower.
3. If the player has a CFC rating, use the rating converted from the CFC system (see below). The converted rating is based on having played 5 games \((N = 5)\) if the CFC rating is over 1500, and based on 0 games \((N = 0)\) if the CFC rating is 1500 or lower.

4. Use an initialized rating as a function of the player’s age (see below). This rating is treated as based on 0 games \((N = 0)\).

5. Use an initial rating of 750 based on 0 games \((N = 0)\).

2.3 Initializing Blitz ratings

Initial ratings for unrated US Chess players in Blitz events are determined in the following order of priority.

1. If the player has an established Regular rating, then use the Regular rating. The rating is treated as based on 10 games \((N = 10)\).

2. If player has a FIDE rating, use the rating converted from the FIDE system (see below). The converted rating is based on having played 10 games \((N = 10)\) if the FIDE rating is over 2150, and based on having played 5 games \((N = 5)\) if the FIDE rating is 2150 or lower.

3. If the player has a CFC rating, use the rating converted from the CFC system (see below). The converted rating is based on having played 5 games \((N = 5)\) if the CFC rating is over 1500, and based on 0 games \((N = 0)\) if the CFC rating is 1500 or lower.

4. If the player has a non-established Regular rating based on at least 4 games, then use the Regular rating based on the smaller of 10 and the number of games on which the Regular rating is based \((N = 10\) or \(N = \) prior number of Regular games, whichever is smaller).

5. If the player has a QC rating based on at least 4 games, then use the QC rating based on 0 games \((N = 0)\).

6. Use an initialized rating as a function of the player’s age (see below). This rating is treated as based on 0 games \((N = 0)\).

7. Use an initial rating of 750 based on 0 games \((N = 0)\).
2.4 Initializing online QC ratings

Initial ratings for unrated US Chess players in online QC events are determined in the following order of priority.

1. If the player has an online Blitz rating, use the online Blitz rating based on 0 games (\(N = 0\)).
2. If the player has a QC rating, use the QC rating based on 0 games (\(N = 0\)).
3. If the player has a Blitz rating, use the Blitz rating based on 0 games (\(N = 0\)).
4. If the player has a Regular rating, use the Regular rating based on 0 games (\(N = 0\)).
5. If player has a FIDE rating, use the rating converted from the FIDE system (see below). The converted rating is based on having played 0 games (\(N = 0\)).
6. If the player has a CFC rating, use the rating converted from the CFC system (see below). The converted rating is based on having played 0 games (\(N = 0\)).
7. Use an initialized rating as a function of the player’s age (see below). This rating is treated as based on 0 games (\(N = 0\)).
8. Use an initial rating of 750 based on 0 games (\(N = 0\)).

2.5 Initializing online Blitz ratings

Initial ratings for unrated US Chess players in online Blitz events are determined in the following order of priority.

1. If the player has an online QC rating, use the online QC rating based on 0 games (\(N = 0\)).
2. If the player has a Blitz rating, use the Blitz rating based on 0 games (\(N = 0\)).
3. If the player has a QC rating, use the QC rating based on 0 games (\(N = 0\)).
4. If the player has a Regular rating, use the Regular rating based on 0 games (\(N = 0\)).
5. If player has a FIDE rating, use the rating converted from the FIDE system (see below). The converted rating is based on having played 0 games ($N = 0$).

6. If the player has a CFC rating, use the rating converted from the CFC system (see below). The converted rating is based on having played 0 games ($N = 0$).

7. Use an initialized rating as a function of the player’s age (see below). This rating is treated as based on 0 games ($N = 0$).

8. Use an initial rating of 750 based on 0 games ($N = 0$).

2.6 FIDE and CFC conversions, and age-based ratings

If an unrated player has a FIDE rating, use a converted rating according to the following formula:

$$\text{USrating} = \begin{cases} 
180 + 0.94 \times \text{FIDE} & \text{if } \text{FIDE} \leq 2000 \\ 20 + 1.02 \times \text{FIDE} & \text{if } \text{FIDE} > 2000 
\end{cases}$$

If an unrated player has a CFC rating\(^1\), use a converted rating according to the following formula:

$$\text{USrating} = \begin{cases} 
\text{CFC} - 90 & \text{if } \text{CFC} \leq 1500 \\ 1.1 \times \text{CFC} - 240 & \text{if } \text{CFC} > 1500 
\end{cases}$$

To determine an age-based initial rating, use the following procedure. Define a player’s age (in years) to be

$$\text{Age} = (\text{Tournament End Date} - \text{Birth Date})/365.25.$$ 

The formula for an initial rating based on age is given by

$$\text{USrating} = \begin{cases} 
100 & \text{if } \text{Age} < 2 \\ 50 \times \text{Age} & \text{if } 2 \leq \text{Age} \leq 26 \\ 1300 & \text{if } \text{Age} > 26 
\end{cases}$$

If an unrated player does not provide a birth date, but is inferred to be an adult (e.g., through an appropriate US Chess membership type), then the initial rating is set to be 1300,

\(^1\)Please note that the US Chess does not maintain a historical database of CFC ratings or a cross-index between US Chess IDs and CFC IDs, so tournament directors are requested to alert the US Chess ratings department when any of their players have no US Chess rating but do have a CFC rating, as those conversions have to be performed manually.
treating the player as a 26-year old in the Age-based calculation. As a practical concern, if “Age” is calculated to be less than 3 years old, then it is assumed that a miscoding of the player’s birthday occurred, and such a player is also treated as a 26-year old in the Age-based calculation.

3 Effective number of games

This section describes the computation of the “effective number of games” a player has previously played. This quantity is used in the rating calculations described in Sections 4.1 and 4.2. The effective number of games conveys the approximate reliability of a rating on the scale of a game count.

For each player, let \( N \) be the number of tournament games the player has competed, or, for unrated players, the value assigned from Step 1 of the algorithm. Let \( R_0 \) be the player’s pre-event rating, or, for unrated players, the initialized rating assigned from Step 1. Let

\[
N^* = \begin{cases} 
50/\sqrt{0.662 + 0.0000739(2569 - R_0)^2} & \text{if } R_0 \leq 2355 \\
50.0 & \text{if } R_0 > 2355 
\end{cases}
\] (1)

Define the “effective” number of games, \( N' \), to be the smaller of \( N \) and \( N^* \). As a result of the formula, \( N' \) can be no larger than 50, and it will usually be less, especially for players who have not competed in many tournament games. Note that \( N' \) is a temporary variable in the computation and is not saved after an event is rated.

Example: Suppose a player’s pre-event rating is \( R_0 = 1700 \) based on \( N = 30 \) games. Then according to the formula above,

\[ N^* = 50/\sqrt{0.662 + 0.0000739(2569 - 1700)^2} = 50/\sqrt{6.24} = 20.0 \]

Consequently, the value of \( N' \) is the smaller of \( N = 30 \) and \( N^* = 20.0 \), which is therefore \( N' = 20.0 \). So the effective number of games for the player in this example is \( N' = 20.0 \).

4 Main rating algorithm

The specific rating algorithm used for a player mainly depends on the number of rated games previously played. For eight or fewer games, the “special” rating algorithm applies (this used
to be called the “provisional” rating algorithm). For more than eight games, the “standard”
rating algorithm (previously the “established” rating algorithm) applies. We describe in
detail each of these algorithms.

4.1 Special rating formula

This procedure is to be used for players with either $N \leq 8$. It also applies to players who
have had either all wins or all losses in all previous rated games.

The algorithm described here extends the old provisional rating formula by ensuring that
a rating does not decrease from wins or increase from losses. In effect, the algorithm finds
the rating at which the attained score for the player equals the sum of expected scores,
with expected scores following the “provisional winning expectancy” formula below. For
most situations, the resulting rating will be identical to the old provisional rating formula.
Instances that will result in different ratings are when certain opponents have ratings that
are far from the player’s initial rating. The computation to determine the “special” rating
is iterative, and is implemented via a linear programming algorithm.

Define the “provisional winning expectancy,” PWe, between a player rated $R$ and his/her
$i$-th opponent rated $R_i$ to be

$$
PWe(R, R_i) = \begin{cases} 
0 & \text{if } R \leq R_i - 400 \\
0.5 + (R - R_i)/800 & \text{if } R_i - 400 < R < R_i + 400 \\
1 & \text{if } R \geq R_i + 400 
\end{cases}
$$

Let $R_0$ be the “prior” rating of a player (either the pre-event rating for rated players, or the
Step 1 initialized rating for unrated players), and $N'$ be the effective number of games. Also
let $m$ be the number of games in the current event, and let $S$ be the total score out of the
$m$ games (counting each win as 1, each loss as 0, and each draw as 0.5).

The variables $R'_0$ and $S'$, which are the adjusted initial rating and the adjusted score, re-
spectively, are used in the special rating procedure. If a player has competed previously, and
all the player’s games were wins, then let

$$
R'_0 = R_0 - 400 \\
S' = S + N'
$$

If a player has competed previously, and all the player’s games were losses, then let

$$
R'_0 = R_0 + 400
$$
\[ S' = S \]

Otherwise, let
\[ R'_0 = R_0 \]
\[ S' = S + \frac{N'}{2} \]

The objective function
\[ f(R) = N' \times \text{PWe}(R, R'_0) + \left( \sum_{i=1}^{m} \text{PWe}(R, R_i) \right) - S' \]

which is the difference between the sum of provisional winning expectancies and the actual attained score when a player is rated \( R \), is equal to 0 at the appropriate rating. The goal, then, is to determine the value of \( R \) such that \( f(R) = 0 \) within reasonable tolerance. The procedure to find \( R \) is iterative, and is described as follows.

Let \( \varepsilon = 10^{-7} \) be a tolerance to detect values different from zero. Also, let \( x_0 = R'_0 - 400 \), \( y_0 = R'_0 + 400 \), and, for \( i = 1, \ldots, m \), \( x_i = R_i - 400 \), \( y_i = R_i + 400 \). Denote the unique \( x_i \) and \( y_i \), \( i = 0, \ldots, m \), as the collection
\[ S_z = \{ z_1, z_2, \ldots, z_Q \} \]

If there are no duplicates, then \( Q = 2m + 2 \). These \( Q \) values are the “knots” of the function \( f \) (essentially the value where the function “bends” abruptly).

1. Calculate
\[ M = \frac{N'R'_0 + \sum_{i=1}^{m} R_i + 400(2S - m)}{N' + m} \]

This is the first estimate of the special rating (in the actual implemented rating program, \( M \) is set to \( R'_0 \), but the final result will be the same – the current description results in a slightly more efficient algorithm).

2. If \( f(M) > \varepsilon \), then
   
   (a) Let \( z_a \) be the largest value in \( S_z \) for which \( M > z_a \).
   
   (b) If \( |f(M) - f(z_a)| < \varepsilon \), then set \( M \leftarrow z_a \) and go back to 2. Otherwise, calculate
\[ M^* = M - f(M) \left( \frac{M - z_a}{f(M) - f(z_a)} \right) \]
If $M^* < z_a$, then set $M \leftarrow z_a$, and go back to 2.

- If $z_a \leq M^* < M$, then set $M \leftarrow M^*$, and go back to 2.

3. If $f(M) < -\varepsilon$, then
   (a) Let $z_b$ be the smallest value in $S_z$ for which $M < z_b$.
   (b) If $|f(z_b) - f(M)| < \varepsilon$, then set $M \leftarrow z_b$ and go back to 3. Otherwise, calculate
       $$M^* = M - f(M) \left( \frac{z_b - M}{f(z_b) - f(M)} \right)$$
       - If $M^* > z_b$, then set $M \leftarrow z_b$, and go back to 3.
       - If $M < M^* \leq z_b$, then set $M \leftarrow M^*$, and go back to 3.

4. If $|f(M)| \leq \varepsilon$, then let $p$ be the number of $i$, $i = 1, \ldots, m$ for which
   $$|M - R_i| \leq 400.$$
   Additionally, if $|M - R'_0| \leq 400$, set $p \leftarrow p + 1$.
   (a) If $p > 0$, then exit.
   (b) If $p = 0$, then let $z_a$ be the largest value in $S_z$ and $z_b$ be the smallest value in $S_z$
       for which $z_a < M < z_b$. If
       - $z_a \leq R_0 \leq z_b$, then set $M \leftarrow R_0$.
       - $R_0 < z_a$, then set $M \leftarrow z_a$.
       - $R_0 > z_b$, then set $M \leftarrow z_b$.

If the final value of $M$ is greater than 2700, the value is changed to 2700. The resulting value
of $M$ is the rating produced by the “special” rating algorithm.

### 4.2 Standard rating formula

This algorithm is to be used for players with $N > 8$ who have not had either all wins or all
losses in every previous rated game.

Define the “Standard winning expectancy,” $W_e$, between a player rated $R$ and his/her $i$-th
opponent rated $R_i$ to be
$$W_e(R, R_i) = \frac{1}{1 + 10^{-(R - R_i)/400}}$$
**K-factor:**

The value of $K$, which used to take on the values 32, 24 or 16, depending only on a player’s pre-event rating, is now defined as (with the exception noted below)

$$K = \frac{800}{N' + m},$$

where $N'$ is the effective number of games, and $m$ is the number of games the player completed in the event. The following are example values of $K$ for particular values of $N'$ and $m.$

<table>
<thead>
<tr>
<th>$N'$</th>
<th>$m$</th>
<th>Value of $K$</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>66.67</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>33.33</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>30.77</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>26.67</td>
</tr>
<tr>
<td>50</td>
<td>4</td>
<td>14.81</td>
</tr>
<tr>
<td>50</td>
<td>6</td>
<td>14.29</td>
</tr>
<tr>
<td>50</td>
<td>10</td>
<td>13.33</td>
</tr>
</tbody>
</table>

In the particular instance in which a player’s rating $R$ is greater than 2200 and that the time control of an event is between G/30 (or G/25+5) to G/60+5 (i.e., dual-rated), the following formula applies for $K$:

$$K = \begin{cases} 
800(6.5 - 0.0025R)/(N' + m) & \text{if } 2200 < R < 2500 \\
200/(N' + m) & \text{if } R \geq 2500 
\end{cases}$$

where $N'$ is the effective number of games, and $m$ is the number of games the player has completed in the event.

**Rating updates:**

If $m < 3$, or if the player competes against any opponent more than twice, the “standard” rating formula that results in $R_s$ is given by

$$R_s = R_0 + K(S - E)$$

where the player scores a total of $S$ points (1 for each win, 0 for each loss, and 0.5 for each draw), and where the total winning expectancy $E = \sum_{i=1}^{m} \text{We}(R_0, R_i)$.
If both $m \geq 3$ and the player competes against no player more than twice, then the “standard” rating formula that results in $R_s$ is given by

$$R_s = R_0 + K(S - E) + \max(0, K(S - E) - B\sqrt{m'})$$

where $m' = \max(m, 4)$ (3-round events are treated as 4-round events when computing this extra term), and $B$ is the bonus multiplier ($B = 14$ effective May 1, 2017). The quantity

$$\max(0, K(S - E) - B\sqrt{m'})$$

is, in effect, a bonus amount for a player who performs unusually better than expected.

The resulting value of $R_s$ is the rating produced by the “standard” rating algorithm.

5 Rating floors

The absolute rating floor for all ratings is 100. No rating can be lower than the absolute rating floor. An individual’s personal absolute rating floor is calculated as

$$AF = \min(100 + 4N_W + 2N_D + N_R, 150)$$

where $AF$ is the player’s absolute floor, $N_W$ is the number of rated games won, $N_D$ is the number of rated games drawn, and $N_R$ is the number of events in which the player completed three rated games. The formula above specifies that a player’s absolute floor can never be higher than 150. As an example, if a player has earned 3 wins, 1 draw, and has competed in a total of 10 events of at least three ratable games, then the player’s absolute floor is $AF = 100 + 4(3) + 2(1) + 10 = 124$.

A player with an established rating has a rating floor possibly higher than the absolute floor. Higher rating floors exist at 1200, 1300, 1400, ..., 2100. A player’s rating floor is calculated by subtracting 200 points from the highest attained established rating after rounding to the nearest integer, and then using the floor at or just below. For example, if an established player’s highest rating was 1941, then subtracting 200 yields 1741, and the floor just below is 1700. Thus the player’s rating cannot go below 1700. If a player’s highest established rating were 1999.51, then subtracting 200 from the integer-rounded rating of 2000 yields 1800 which is the player’s floor. If an established player’s highest rating was 1388, then subtracting 200 yields 1188, and the next lowest floor is the player’s absolute floor, which is this player’s current floor.
A player who earns the original Life Master (OLM) title, which occurs when a player keeps an established rating above 2200 for 300 (not necessarily consecutive) rated games, will obtain a rating floor of 2200. Achievement of other US Chess titles do not result in rating floors.

A player’s rating floor can also change if he or she wins a large cash prize. If a player wins $4,000 or more in an under-2000 context, the rating floor is set at the first 100-point level (up to 2000) which would make the player no longer eligible for that section or prize. For example, if a player wins $4,000 in an under-1800 section of a tournament, then the player’s rating floor would be 1800. Floors based on cash prizes can be at any 100-point level, not just the ones above based on peak rating.

6 Updating US Chess ratings from foreign FIDE events

The US Chess regularly updates ratings based on performances in FIDE-rated non-US Chess events to obtain more accurate ratings for its players. The following describes the procedure used to update US Chess ratings based on performance in FIDE events. Only players with an established US Chess regular rating are eligible for adjustments based on foreign FIDE events.

- Only current US Chess members are eligible for FIDE adjustments. Each time a FIDE rating list is produced, the US Chess office identifies all players who appear with a “USA flag” (usually US residents) and who have played at least one FIDE-rated game in the set of events/tournaments that are included in producing the rating list. The office may also include US residents who are not players with a “USA flag.” Members with a FIDE rating of at least 2200 with a “USA flag” will automatically have their US Chess rating updated for their play in foreign FIDE rated events. US Chess members who are rated under 2200 FIDE or who have no FIDE rating must opt-in to this process in advance of the event by contacting the US Chess office. Once a player has opted-in, that player cannot opt-out without the approval of the US Chess Executive Director.

- For each identified US player, all the player’s opponents are identified along with their FIDE ratings. Opponents who do not have a FIDE rating are ignored.

- The opponents’ FIDE ratings are converted to the US Chess scale using the conversion described in Section 2.6. If an event is known to be a youth event, such as the World Youth Championships, then the following conversion is used for all opponents:

\[
\text{USrating} = \begin{cases} 
560 + 0.76 \times \text{FIDE} & \text{if FIDE} \leq 2000 \\
80 + 1.0 \times \text{FIDE} & \text{if FIDE} > 2000
\end{cases}
\]
• The standard rating formula (with bonus) is then applied to update the player’s US Chess rating based on the opponents’ converted ratings. The standard formula is applied only once, as opposed to twice in the usual algorithm.

7 Miscellaneous details

The following is a list of miscellaneous details of the rating system.

• All games played in US Chess-rated events are rated, including games decided by time-forfeit, games decided when a player fails to appear for resumption after an adjournment, and games played by contestants who subsequently withdraw or are not allowed to continue. Games in which one player makes no move are not rated.

• The rating calculations apply separately to the Regular, QC, Blitz, online QC and online Blitz chess rating systems. Other than the use of imputing initial ratings for unrated players, there is no formal connection among these systems.

• After an event, each players’ value of $N$ is incremented by $m$, the number of games the player competed in the event.

• Individual matches are rated with the following restrictions:

  1. Both players involved must have an established published rating, with the difference in ratings not to exceed 400 points.

  2. The maximum rating change in a match is 50 points; the maximum net rating change in 180 days due to match play is 100 points; and the maximum net rating change in 3 years due to match play is 200 points.

  3. The bonus formula does not apply to matches.

  4. Rating floors are not automatically in effect in matches. Instead, if a player has a match result that would lower the rating to below that player’s floor, this will be treated as a request to have that floor lowered by 100 points. If the US Chess office grants this request, the rating will drop below the old floor and the new floor will be 100 points below the old floor.

• Ratings are stored as floating point values, and not as integers. All the rating computations assume the input ratings are floating point. However, official ratings are
expressed rounded to the nearest integer using conventional rounding rules. Also, ratings on tournament wallcharts, on crosstables on the US Chess web site, and in other official forums, are also displayed rounded to the nearest integer.

- The US Chess Executive Director may review the rating of any US Chess member and make the appropriate adjustments, including but not limited to imposition of a rating “ceiling” (a level above which a player’s rating may not rise), or to the creation of “money floors” (rating floors that are a result of winning large cash prizes).