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Abstract Differential item functioning (DIF) in tests and multi-item surveys occurs when

a lack of conditional independence exists between the response to one or more items and

membership to a particular group, given equal levels of proficiency. We develop an

approach to detecting DIF in the context of item response theory (IRT) models based on

computing a diagnostic which is the posterior mean of a p-value. IRT models are fit in a

Bayesian framework, and simulated proficiency parameters from the posterior distribution

are retained. Monte Carlo estimates of the p-value diagnostic are then computed by

comparing the fit of nonparametric regressions of item responses on simulated proficiency

parameters and group membership. Some properties of our approach are examined through

a simulation experiment. We apply our method to the analysis of responses from two

separate studies to the BASIS-24, a widely used self-report mental health assessment

instrument, to examine DIF between the English and Spanish-translated version of the

survey.

Keywords Bayesian modeling � Conditional independence � Mental health outcome �
Model diagnostics � Patient surveys

The views expressed in this article are those of the authors and do not necessarily reflect the views of the
Department of Veterans Affairs.

M. E. Glickman � S. V. Eisen
Department of Health Policy and Management, Boston University School of Public Health,
Boston, MA, USA

M. E. Glickman (&) � S. V. Eisen
Center for Health Quality, Outcomes and Economics Research, a Veteran Administration Center
of Excellence, Edith Nourse Rogers Memorial Hospital (152), Bldg 70, 200 Springs Road, Bedford,
MA 01730, USA
e-mail: mg@bu.edu

P. Seal
Department of Mathematics and Statistics, Boston University, Boston, MA, USA

123

Health Serv Outcomes Res Method
DOI 10.1007/s10742-009-0052-4



1 Introduction

The assessment of differential item functioning (DIF) has become an integral part of

determining the validity of standardized tests and multi-item surveys. In the context of

tests, DIF occurs when people from different groups with the same ability have system-

atically different responses to specific test items. If, for example, a math test item has boys

answering correctly more often than girls of equal ability because the subject of the item is

on a topic more familiar to boys (e.g., sports), then the item is said to exhibit DIF and

should be considered for modification or removal from the test. DIF of an item can

therefore be understood as a lack of conditional independence between an item response

and group membership (often gender or ethnicity) given the same latent ability or trait.

While differential item functioning has been applied most traditionally to educational

tests, DIF studies are increasingly finding application to health surveys. The focus of this

paper is on health surveys, so we will henceforth view a patient’s health as the latent trait in

a DIF analysis. In a recent paper, Teresi (2006) has provided a review of statistical issues

of DIF in health applications. Perkins et al. (2006) have examined DIF for items in a

widely used health status instrument by age, education, race and gender groupings, and

found many items to exhibit DIF. Pagano and Gotay (2005) have shown the presence of

DIF by ethnic groups in a quality of life survey for cancer patients. Cauffman and Mac-

Intosh (2006), in a recent mental health application, examine DIF by gender and ethnic

groups of incarcerated juveniles in an instrument designed to identify mental health

problems. As more health-related applications involve the detection of DIF to establish the

validity of health surveys, the more crucial the statistical underpinnings for DIF detection

continues to be.

Various methods for detection of DIF have been proposed over the past 25 years. The

most commonly used approach is based on a Mantel–Haenszel analysis of the relationship

between item responses and group membership conditional on an observed measure of

ability (Holland and Thayer 1988), usually, in the context of tests, the total number

of correctly answered items. Another common approach to detect DIF is to use log-linear

or logistic models, as described in Kok et al. (1985) and Swaminathan and Rogers (1990).

Recognizing that these methods involve conditioning on a measured surrogate of a latent

trait, DIF detection has been more recently formulated in the context of item response

theory (IRT) models. The advantage to the IRT framework is that latent trait is explicitly

modeled as an unknown parameter to be inferred in the fitting process. Thissen et al.

(1993) provide an overview of a set of methods that rely on fitting IRT models and then

examining lack-of-fit statistics to assess the presence of DIF. These methods, however,

require estimation of the latent trait and other model parameters (e.g., through maximum

likelihood) on a likelihood surface which can be relatively flat due to the IRT model being

highly parameterized. In such cases, the estimated latent trait parameters can be unreliable

measures, even when evaluating likelihood-based quantities, and diagnostics based on

these estimates can lead to overly optimistic conclusions.

To account for the uncertainty inherent in model inferences, several authors have

explored DIF detection in IRT models within a Bayesian framework. One Bayesian

approach is to determine the marginal posterior distribution of model parameters indicative

of DIF. Wainer et al. (2007, ch 14), for example, suggest fitting an IRT model with a

parameterization in which health outcomes depend explicitly on group membership—

inferences about a group membership coefficient will reveal whether DIF has been

detected for that item. The other main alternative has been to fit a single Bayesian model,

and then perform posterior predictive checks (Gelman et al. 1996) as a means to diagnose
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item-level lack of model fit. Hoijtink (2001), for example, proposes examining the pos-

terior predictive distribution of a standardized lack-of-fit statistic to compare against the

statistic evaluated on the observed data. To examine person-specific fit diagnostics in IRT

models, Glas and Meijer (2003) propose using posterior predictive checks on a variety of

measures. Sinharay (2005) provides a more general discussion of posterior predictive

checks for Bayesian IRT models beyond the context of DIF detection. These approaches

have promise in allowing some freedom to choose a relevant lack-of-fit measure, but the

motivation for choosing particular measures is not always compelling.

This paper proposes a diagnostic method for detecting DIF in a Bayesian IRT model

that relies on examining the posterior distribution of an appropriately chosen measure. Our

method shares similarities with the approach of posterior predictive checks in that we first

fit a Bayesian IRT model to obtain the posterior distribution of all model parameters. We

then construct a measure that directly addresses whether a conventional definition of

differential item functioning has been satisfied, and subsequently summarize the posterior

distribution of this measure. Allowing the measure to be a function of the latent health

parameters permits the diagnostic to address both the uncertainty in model inferences and

the increased flexibility to specify a measure that appropriately captures DIF. Our method,

however, is not a posterior predictive check as our diagnostic is not averaged over the

posterior predictive distribution.

The paper is organized as follows. We explain the construction of our DIF diagnostic in

Sect. 2. The method is evaluated through a simulation analysis in Sect. 3. The approach is

then applied to a study on detecting DIF in items between an English and Spanish version

of a commonly used mental health survey, which is presented in Sect. 4. A discussion of

the method and its limitations are outlined in Sect. 5.

2 A Bayesian method for detecting DIF

Let i index respondents (i = 1,..., n) and let j index items (j = 1,..., J) on a J-item health

survey. Assuming each item has K possible choices, consider a univariate IRT model of the

form

PðYij ¼ kjaj; bjk; hi; c; d; xiÞ ð1Þ

for k = 1,..., K, where hi is the latent health trait for respondent i, xi is a vector of r
covariates for respondent i, bjk (for k = 1,..., K-1) is a ‘‘difficulty’’ parameter for the k-th

category of item j, aj [ 0 is an item-specific discrimination parameter, c is a vector of other

model parameters (for example, ‘‘guessing’’ parameters in certain IRT models), and d are

the effects of xi: Several common examples of IRT models include the two-parameter

logistic model (Birnbaum 1968) for binary responses,

logit PðYij ¼ 1jaj; bj; hiÞ ¼ ajðhi � bjÞ; ð2Þ

the three-parameter logistic model (Birnbaum 1968) for binary responses,

PðYij ¼ 1jaj; bj; hi; cÞ ¼ cj þ ð1� cjÞ
expðaj½hi � bj�Þ

1þ expðaj½hi � bj�Þ

 !
; ð3Þ
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the generalized partial credit model (Muraki 1992)

PðYij ¼ kjaj; bj; hi; cÞ ¼
exp

Pk
‘¼0 aj½hi � ðbj � c‘jÞ�PK

x¼0 exp
Px

‘¼0 aj½hi � ðbj � c‘jÞ�
; ð4Þ

or the ordinal response model of Samejima (1969),

logit PðYij� kjaj; bjk; hiÞ ¼ ajðhi � bjkÞ: ð5Þ

In each of these models, person-specific background variables (e.g., socio-demographic

variables) can be included in a straightforward manner by substituting hi with ~hi � x0id;
where d in this case are the linear effects of xi: Adjusting the ability parameter by back-

ground covariate information can help with the identification of DIF, as argued by Glas

(2001). The ~hi can be interpreted as a measure of health for participant i adjusted for socio-

demographic effects, so that by viewing ~h as the summary health feature all study par-

ticipants are measured relative to the same baseline.

Suppose the question of interest is to determine which of the J test items exhibits DIF

depending on membership to a ‘‘focal’’ group versus a reference group. For example, if one

wants to examine whether certain items on a multiple choice exam favor boys relative to

girls, the girls would be the focal group and the boys would be the reference group. Let gi

be the binary indicator of the focal group membership for respondent i, that is

gi ¼
0 if respondent i is in the reference group

1 if respondent i is in the focal group.

�
ð6Þ

Formally, for an arbitrary respondent, DIF exists for item j if, for some k,

PðYj ¼ kjh; g ¼ 0Þ 6¼ PðYj ¼ kjh; g ¼ 1Þ ð7Þ

(Hoijtink 2001, Shealy and Stout 1993). When (7) is true, either conditional independence is

violated, or the assumption of unidimensionality of h does not hold (see, for example,

Angoff 1982). If covariate information, x; is given, then, in terms of ~h; (7) can be restated as

PðYj ¼ kj~h; g ¼ 0Þ 6¼ PðYj ¼ kj~h; g ¼ 1Þ: ð8Þ

The method we develop is constructed to detect when (7) and (8) do not hold for the

sample of respondents in a study. For the remainder of the discussion, we will assume that

covariate information is available, and that DIF detection will involve the ~hi:
Our approach to detecting DIF for item j involves two steps. First, we fit an IRT model

that may adjust for covariates x; but does not adjust for DIF group membership g, within a

Bayesian framework via Markov chain Monte Carlo (MCMC) simulation from the pos-

terior distribution, and retain simulated values from the marginal posterior distribution of

the ~hi: Second, based on the results of the fitted model, we check whether the Yj are

conditionally independent of g given ~h: More specifically, for each simulated vector of

health parameters ~h ¼ ð~h1; . . .; ~hnÞ; we calculate the p-value for a likelihood ratio test

comparing a flexible, possibly non-parametric, regression model for Yj as a function of ~h
and g to a smaller model for Yj only as a function of ~h: We assume that the choice of

flexible models results in a likelihood ratio test statistic that is asymptotically v2-distrib-

uted, following classical theory. The average of these p-values across the simulated vectors

of ~h is a Monte Carlo estimate of the posterior mean p-value. Because each individual

likelihood ratio statistic is constructed to have a p-value that is approximately uniform

under the model that does not include g, the resulting posterior mean p-value is also
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calibrated to be approximately uniform. The reason is that the likelihood ratio statistic is

being applied to the comparison of two flexible regressions, making it irrelevant that each

Monte Carlo draw of ~h is simulated from the marginal posterior distribution of the IRT

model. This second step of the algorithm is applied repeatedly for each item in the test. We

discuss these two separate steps of our approach in detail below.

Bayesian fitting of IRT models is becoming increasingly commonplace arguably due to

the increased ease of implementation of the fitting algorithms. In a pair of papers, Patz and

Junker (1999a, b) lay out a general approach for implementing an MCMC algorithm for

posterior sampling in the context of general IRT models. Other recent examples of Bayesian

IRT modeling include Bradlow et al. (1999), Janssen et al. (2000), Beguin and Glas (2001),

Fox and Glas (2001), Johnson and Sinharay (2005), and Wainer et al. (2007, ch 14). Rather

than determining analytically the conditional posterior distributions necessary for MCMC

simulation, publicly available Bayesian software such as WinBUGS (Spiegelhalter et al.

2003) and OpenBUGS (Thomas et al. 2006) allows for straightforward implementation of

many IRT models. Recent examples of the use of WinBUGS in fitting IRT models include

May (2006) who uses WinBUGS to fit multilevel IRT models, and Kang and Cohen (2007)

who use WinBUGS in comparing methods of fit to various IRT models.

In determining the Monte Carlo posterior mean p-value, we calculate for each simulated
~h the usual p-value for the likelihood ratio v2 test comparing a model predicting Yj from

both g and ~h to a model predicting Yj from only ~h: It is important that the IRT model does

not adjust ~h for g because the ‘‘null hypothesized’’ relationship between Yj and ~h in the

likelihood ratio test should not already be conditional on g. More formally, let

QðYj; g; ~hjM1;M2Þ be the p-value for the v2 likelihood ratio test comparing models

M1 �M2: Then the posterior mean p-value is computed as

qðYj; gjM1;M2Þ ¼
Z

QðYj; g; ~hjM1;M2Þpð~hjY; xÞd~h

� 1

M

XM
m¼1

QðYj; g; ~h
ðmÞjM1;M2Þ

ð9Þ

where ~h
ðmÞ

is the m-th saved MCMC draw (m = 1,..., M). The choice of models M1 and

M2 should allow for flexible relationships between Yj and the two predictors; for example,

for binary Yj, a non-parametric logistic regression as a function of ~h and g is sensible. For

polytomous Yj, non-parametric models of Yee and Wild (1996) would be appropriate.

Small values of the posterior mean p-value, qðYj; gjM1;M2Þ; in (9) indicate evidence that

the relationship between Yj and ~h depends on g.

Our approach can be contrasted with that of Wainer et al. (2007, ch 14) who also

develop a method of diagnosing DIF in a Bayesian model. To identify whether item j
evidences DIF, their approach is essentially equivalent to fitting a Bayesian IRT model in

(2) in which the parameter bj is replaced by (bj(1-gi) ? bj
*gi), where bj and bj

* are the

item difficulty parameters for the reference and focal groups, respectively. Posterior

inferences about P(|bj - bj
*| [ 0) provide evidence of DIF for item j. The authors note that

their procedure is computationally intensive, as separate models need to be fit for each DIF

analysis of an item. They suggest a screening procedure in which the Mantel–Haenszel test

identifies candidate items for DIF study under the Bayesian procedure.

Our approach is also similar to that of Hoijtink (2001), but can also be contrasted in

several respects. The approach of Hoijtink more closely follows Gelman et al. (1996) in

that the diagnostic DIF statistic (which itself is a standardized fit measure) is a function of

observables, and that the posterior predictive p-value is computed based on comparing the
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statistic evaluated on the observed data to the posterior distribution of the statistic from

MCMC posterior predictive simulations.

Our method, in contrast, has several features that make it an appealing alternative to

these two. First, unlike the Wainer et al. method, our approach requires fitting only one

IRT model rather than one model per item, so that the Bayesian model fitting computation

is confined to one analysis. Second, while Wainer et al. consider an additive effect (on the

logit scale) of gi, and Hoijtink propose a fit measure based on a crude surrogate of the latent

trait (namely, for detecting DIF on item j, the sum of the scores for all other items), our

method recognizes the possibility of a more complicated relationship, for example an

interaction between the ~hi and gi through a non-parametric relationship with Yij. Third, our

method does not require specifying the focal and reference groups prior to fitting the IRT

model. Once posterior simulations of the ~hi have been obtained, a number of DIF analyses

can be performed depending on dichotomies of interest. Finally, our measure is self-

calibrated to have an interpretation as following a uniform distribution, so that the extra

computation usually needed to obtain a reference distribution in a posterior predictive

check is unnecessary.

3 Examination of method via simulation

To evaluate our approach in detecting DIF, we performed a small simulation experiment.

Because each IRT model fit with MCMC posterior simulation and subsequent posterior

mean p-value calculation can be computationally prohibitive, our simulation analyses are

limited and intend only to provide a modest study of how various factors influence the

ability of our method to assess DIF.

We generated binary outcomes from the 2-parameter logit IRT model specified in (2).

We varied three factors in the simulation experiment:

1. the number of respondents, N (set to 150, 300, or 900)

2. the number of items, J (set to either 10 or 30)

3. the fraction of items, F, generated to exhibit DIF (set to either 10% or 20%)

This resulted in a total of 3 9 2 9 2 = 12 simulation conditions. Within each condition,

we repeated the process 10 times of simulating data and then implementing our approach

for detecting DIF.

For any individual set of simulated data, we generated the aj from a log-normal dis-

tribution with log aj�Nð0; 0:252Þ; the bj from N(0, 0.52), and the hi from N(0, 1). We

simulated Bernoulli gi with probability 0.5, and for the fraction F of test items assumed to

exhibit DIF we generated Bernoulli Yij according to

logit PðYij ¼ 1jaj; bj; hi; cÞ ¼ ajðhi � bjÞ � gic; ð10Þ

with effect size c = 1.0; for all other items, the Yij were simulated directly from (2). The

choice of c = 1.0 corresponds to an odds ratio of exp(1.0) & 2.7, which has been con-

sidered a medium effect size in logistic regression (see, for example, Rosenthal 1996).

Once the response data were generated, we then fit the 2-parameter logistic IRT model

in (2) but without the gi as part of the model specification. We assumed a prior distribution

that factored into independent densities with components log aj * N(0, r2), bj * N(0,

100), and hi * N(0, 1); such a constraint on the hi has been used previously, as in Wainer

et al. (2007, ch 14). We also assumed a uniform prior density on r between 0 and 100; this
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type of prior density for standard deviations in hierarchical models has been recommended

by Gelman and Hill (2007). Each MCMC sampler, which was implemented in OpenBUGS

(Thomas et al. 2006) called from within the R (R Development Core Team 2008) using the

R2WinBUGS function, was run with two parallel chains consisting of a burn-in period of

2000 iterations, retaining a subsequent 1000 simulated sets of hi from each chain for DIF

analysis. From initial exploration, 2000 iterations appeared to be a sufficient number for

the sampler to converge. Then, for each j, and the vector of the hi from iteration m, we

computed a likelihood ratio v2-based p-value comparing the fit of a smoothing spline

model of Yij regressed on the simulated hi, and the fit of a smoothing spline model of the Yij

regressed on the interaction of hi and gi (essentially one smoothing spline for gi = 0 and a

second for gi = 1). Determining the p-value for this comparison is described in Hastie and

Tibshirani (1990), and implemented with the ‘‘gam’’ function in R. The average of the

2,000 p-values is the Monte Carlo estimate of the posterior mean p-value.

Summaries from the simulations appear in Table 1. For the 10 replications across each

simulation condition, we examined the distribution of posterior mean p-values for items

assumed to have DIF, true and false positive rates (for DIF items and non-DIF items,

respectively) relative to a 0.05 significance level, and Bonferroni-adjusted true and false

positive rates in which the significance level is set to 0.05/J. When N is 150, the distri-

bution of posterior mean p-values for the DIF items with the assumed effect size stays

moderately large for all values of J and F. The probability of DIF detection is close to 0.5

for a 0.05 significance level, and is unacceptably low for the Bonferroni-adjusted signif-

icance level. The FPRs remain generally lower than expected under the uniform p-values.

In doubling the sample size to 300, the p-values decrease to the 0.05–0.10 range with

J = 10 items, and even lower (around 0.03) when J = 30. The TPR is between 70% and

90% for a 0.05 p-value, but only as high as 50% for the Bonferroni-adjusted analyses.

Again, the FPRs are roughly consistent with a 0.05 level. With N = 900, the p-values for

Table 1 Summaries of the simulation experiment

N J F DIF p-values True and false positive rates

Mean 10% 90% TPR FPR TPR(*) FPR(*)

150 10 0.1 0.1527 0.0120 0.3040 0.5000 0.0000 0.0000 0.0000

150 10 0.2 0.0874 0.0016 0.1955 0.5500 0.0125 0.2000 0.0000

150 30 0.1 0.1380 0.0018 0.3016 0.5172 0.0444 0.1034 0.0037

150 30 0.2 0.1537 0.0041 0.5423 0.4833 0.0542 0.0833 0.0042

300 10 0.1 0.0960 0.0000 0.2097 0.7000 0.0000 0.5000 0.0000

300 10 0.2 0.0565 0.0002 0.1891 0.7500 0.0125 0.4500 0.0125

300 30 0.1 0.0290 0.0001 0.0796 0.8667 0.0222 0.5333 0.0037

300 30 0.2 0.0290 0.0001 0.0807 0.8000 0.0417 0.2833 0.0042

900 10 0.1 0.0007 0.0000 0.0010 1.0000 0.0444 0.9000 0.0000

900 10 0.2 0.0001 0.0000 0.0001 1.0000 0.0625 1.0000 0.0125

900 30 0.1 0.0001 0.0000 0.0002 1.0000 0.0333 0.9667 0.0000

900 30 0.2 0.0023 0.0000 0.0001 0.9833 0.1208 0.9833 0.0042

For each simulation condition indexed by values of N, J and F, the sample mean, 10 and 90 percentile of the
p-value distribution from 10 replications are reported for items assumed to have DIF. TPR and FPR are the
proportion of significant p-values at the 0.05 level for items assumed to have DIF and those not assumed to
have DIF, respectively. TPR(*) and FPR(*) are the 0.05-level Bonferroni-adjusted true and false positive
rates
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the DIF items are very small, and at least 90% power is achieved even with the Bonferroni-

adjusted significance levels. The FPRs are low, but some of the p-values incorrectly

indicate the presence of DIF, especially when the fraction of DIF items F is 0.2. This may

be due to the hi being estimated incorrectly from the wrong model (where the gi are omitted

from the models). However, with the Bonferroni-adjusted significance levels, the magni-

tude of the FPRs are not problematic.

4 Application to a mental health survey

We applied our method to examine DIF between an English and Spanish version of the

Behavior and Symptom Identification Scale (BASIS-24), a commonly used mental health

self-report instrument, for two Latino cohorts enrolled in mental health or substance abuse

programs. The original 32-item BASIS instrument was developed in 1984, and was

designed to be used as a mental health status measure from a patient’s perspective for the

outcome of mental health treatment (Eisen et al. 1994). Eisen et al. (2004) developed a

revised instrument, the BASIS-24, containing 24 items, which is the focus of the current

study. Reliability and validity of the BASIS-24 among Latinos was verified in Eisen et al.

(2006) for the English version of the instrument, and in Cortés et al. (2007) and Eisen et al.

(2009) for the Spanish translation.

While the English and Spanish instruments have been separately validated, it is of

interest to know whether individual items have different meaning due to the nuances of the

translation process or to inherent differences between the English and Spanish languages.

The data we used to investigate this question came from two separate studies. The first

sample consisted of the subset of self-identified Latinos among a cohort of English-

speaking inpatients and outpatients receiving mental health or substance abuse treatment at

programs across the U.S. The BASIS-24 assessments were made at the start of the study,

with data collected 2001–2002 (Eisen et al. 2006). A total of 370 BASIS-24 assessments

were available for our study. The second sample consisted of Spanish-speaking self-

identified Latinos who were given the Spanish adaptation of the BASIS-24. The Spanish

assessments were conducted from 2004–2005 and resulted in a total of 594 patients from

three regions of the U.S. (Eisen et al. 2009). Sample summaries of these two sets of

patients appear in Table 2. The English cohort contains a greater proportion of outpatients,

tends to be younger, has a slightly greater proportion of male patients, is somewhat more

educated, and has greater proportion of substance abuse patients and lower proportion of

patients with depressive and schizophrenia/schizoaffective disorders compared to the

Spanish cohort. To account for the imbalance on these background characteristics, we

incorporate these features in our IRT models.

The BASIS-24 instrument consists of 24 items on a 5-valued ordinal scale indicating the

degree of difficulty (none, a little, moderate, quite a bit, extreme) or frequency of symp-

toms experienced in the past week. The list of items in English and Spanish appears in

Table 3. The 24 items comprise six domains: depression/functioning, interpersonal rela-

tionships, self-harm, emotional lability, psychotic symptoms, and substance abuse. Prior to

modeling, we inverted the scale of six items (items 4 through 9) so that higher-valued

responses always indicated worse mental health. Sample means and 95% confidence

intervals of the individual item scores, stratified by English versus Spanish, are displayed

in Fig. 1. Generally, the mean scores by item tend to be close between English and Spanish

cohorts, though, for some items (including items 10, 12, 15, 16, 17), patients in the Spanish
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cohort reported worse mental health. This difference could be due to the higher proportion

of inpatients in the Spanish sample.

We modeled the BASIS responses using Samejima’s (1969) IRT model for ordinal

outcomes, incorporating the covariate adjustment term as described in Sect. 2. Specifically,

for i = 1,..., 594 ? 370 = 964, j = 1,..., 24, and k = 1,..., 5, we assumed

logit PðYij� kjaj; bjk;
~hi; xi; dÞ ¼ ajð~hi � x0id� bjkÞ; ð11Þ

where Yij is the response by patient i to item j, ~hi is the covariate-adjusted health measure

for patient i, aj and bjk are as defined in (5), and x0id is the linear effect (on the logit scale)

of patient status (inpatient vs. outpatient), age, gender, educational level, and primary

diagnosis, as they are categorized on Table 2. A small fraction of patients had their

educational level and primary diagnosis missing, so we assumed a priori that a missing

category was uniformly distributed over the observed category levels (though model fitting

would likely reveal non-uniform posterior inferences).

Table 2 Summaries of patient sample stratified by cohort

Sample characteristic Spanish cohort
(n = 594)

English cohort
(n = 370)

Patient status

Inpatient 48 30

Outpatient 52 70

Age (years)

Age \ 25 15 22

25 B Age \ 35 24 39

35 B Age \ 45 25 24

45 B Age \ 55 25 13

55 B Age 10 3

Gender

Male 44 50

Female 56 50

Educational level

4th grade–8th grade 31 7

8th grade–12th grade 30 27

High school graduate 14 32

Some college 18 23

4-year college graduate 6 11

Not recorded 2 1

Primary diagnosis

Schizophrenia/Schizoaffective disorder 22 11

Depressive disorder 43 20

Bipolar disorder 9 7

Alcohol/drug use order 6 24

Anxiety disorder and others 14 11

Not recorded 6 28

Values represent percentage out of the respective cohort
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Because our IRT model was highly parameterized, several modeling restrictions and

simplifications were made before implementing the MCMC posterior sampler. First, as in

the simulation analyses, we assumed exchangeable prior density components, ~hi�Nð0; 1Þ:
Secondly, to properly identify covariate effects and to avoid unnecessary correlations

among the covariate parameters, all individual covariate effects were constrained to sum

to 0. Furthermore, the conditional posterior distribution of the individual bjk given the

remaining parameters were constrained to be sampled from a range limited by the adjacent

parameter values, bj,k-1 and bj,k?1. Diffuse but proper prior density components were

assumed for all model parameters.

Table 3 BASIS-24 items in English and Spanish

English Spanish

During the past week, how much difficulty did you
have...

Durante la semana pasada, > Qué tan difı́cil fue para
usted...

1. Managing your day-to-day life? 1. hacerse cargo de su vida diaria?

2. Coping with problems in your life? 2. enfrentar los problemas de su vida?

3. Concentrating? 3. concentrarse?

During the past week, how much of the time did
you...

Durante la semana pasada, > Con cuánta frecuencia...

4. Get along with people in your family? 4. se llevó bien con sus familiares?

5. Get along with people outside your family? 5. se llevó bien con personas que no son familiares
suyos?

6. Get along well in social situations? 6. se llevó bien in situaciones sociales?

7. Feel close to another person? 7. se sintió cercano(a)a alguna otra persona?

8. Feel like you had someone to turn to if you
needed help?

8. sintió que tenı́a alguien con quien contar si
necesitaba ayuda?

9. Feel confident in yourself? 9. se sintió de sı́ mismo(a)?

10. Feel sad or depressed? 10. se sintió triste o deprimido(a)?

11. Think about ending your life? 11. pensó en quitarse la vida?

12. Feel nervous? 12. sintió nervioso(a)?

During the past week, how often did you... Durante la semana pasada, > Que tan a menudo...

13. Have thoughts racing through your head? 13. pensó muchas cosas muy rápido y todas la vez?

14. Think you had special powers? 14. pensó que tenı́a poderes especiales que otras
personas no tienen?

15. Hear voices or see things? 15. oyó voces o vio cosas que otras personas no oyeron
o vieron?

16. Think people were watching you? 16. creyó que las personas lo/la estaban vigilando?

17. Think people were against you? 17. creyó que la gente estaba en contra suya?

18. Have mood swings? 18. tuvo cambios inesperados de ánimo?

19. Feel short-tempered? 19. se sintió irritable?

20. Think about hurting yourself? 20. pensó hacerse daño?

21. Did you have an urge to drink alcohol or take
street drugs?

21. tuvo muchas ganas de tomar alcohol o de usar
drogas?

22. Did anyone talk to you about your drinking or
drug use?

22. alguien le dijo algo sobre su uso de alcohol o
drogas?

23. Did you try to hide your drinking or drug use? 23. trató de esconder su uso de alcohol o drogas?

24. Did you have problems from your drinking or
drug use?

24. tuvo problemas debido a su uso de alcohol o
drogas?
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An MCMC sampler for the IRT model was implemented in OpenBUGS. Two parallel

samplers were run for a burn-in period of 2000 iterations, after which the samplers were

diagnosed to have converged through the examination of trace plots of various model

parameters and through the examination of diagnostics such as the potential scale reduction

statistic (Gelman and Rubin 1992). Simulated values of the ~hi were saved for the next

1,000 iterations in each chain, resulting in 2,000 simulated sets of parameter values. For the

subsequent discussion, let ~hðmÞi denote the m-th iteration of ~hi;m ¼ 1; . . .; 2000; from the

MCMC sampler.

Letting gi = 1 for the patients who were administered the Spanish version of the

BASIS-24, and gi = 0 for the English version, we carried out three analyses for each item j
to compute posterior mean p-values to assess the lack of conditional independence of item

responses and version of the BASIS-24 instrument given latent health measure ~h: First, for

each m, treating the item responses as a 5-valued quantitative variable, we computed the

likelihood ratio v2-based p-value comparing the fit of a smoothing spline model of Yij
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Fig. 1 Means and 95% confidence intervals for BASIS item scores, stratified by English/Spanish cohort.
Items are labeled by categorization into six domains: ‘‘D’’, depression/functioning; ‘‘R’’, interpersonal
relationships; ‘‘H’’, self-harm; ‘‘E’’, emotional lability; ‘‘P’’, psychotic symptoms; and ‘‘S’’, substance abuse
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regressed on the ~hðmÞi ; and the fit of a smoothing spline model of the Yij regressed on the

interaction of ~hðmÞi and gi as carried out in the simulation analyses of Sect. 3 using the

‘‘gam’’ function in R. The second analysis was the same as the first, except that Yij was

modeled as a multinomial variable, the ~hðmÞi were discretized into five ordered categories of

equal size, and the likelihood ratio was computed based on the fits of multinomial logit

models. The third analysis also modeled the Yij as a multinomial variable, but did not

discretize the ~hðmÞi : A likelihood ratio p-value for this situation was constructed by fitting a

multinomial logit model with a smoothing spline function of the ~hðmÞi ; and with a

smoothing spline function of the interaction of ~hðmÞi and gi. This modeling approach is

described in Yee and Wild (1996), and has been implemented in the ‘‘vgam’’ function (Yee

2006) in R. In all three approaches, the average of the 2,000 p-values was the Monte Carlo

estimate of the posterior mean p-values. The resulting values are displayed in the first three

Table 4 Results of the DIF analyses of the BASIS-24 responses

BASIS-24 Item Posterior p-values Likelihood p-values

Scenario A Scenario B Scenario C Scenario A Scenario B Scenario C

1. 0.3211 0.2064 0.3054 0.1234 0.1132 0.1135

2. 0.0089 0.0191 0.0031 0.5613 0.0109 0.0044

3. 0.0523 0.1861 0.1724 0.0718 0.1866 0.3300

4. 0.0454 0.0144 0:0013 0:0006 0:0012 0:0003

5. 0.0062 0.3122 0.1024 0.0107 0.1981 0.0237

6. 0.0140 0.3386 0.2127 0:0003 0:0015 0.0327

7. 0:0005 0.0605 0.0101 0:0000 0.0053 0:0006

8. 0.0283 0.5317 0.3751 0.0875 0.8029 0.6692

9. 0:0011 0.0374 0.0198 0:0009 0.0772 0.0277

10. 0.3010 0.2636 0.1038 0.0702 0.0578 0.0754

11. 0.4968 0.6595 0.6353 0.0088 0.0420 0.2649

12. 0.0395 0.1104 0.0393 0.0504 0.0866 0.0872

13. 0.1563 0.2813 0.1734 0.1043 0.5369 0.2123

14. 0.1141 0.0618 0.0653 0.6637 0.1106 0.1017

15. 0:0000 0:0000 0:0000 0:0000 0:0000 0:0000

16. 0:0000 0.0162 0.0025 0:0000 0.2330 0.0282

17. 0.0030 0.0127 0:0012 0.0039 0:0007 0.0022

18. 0.1946 0.0695 0.0113 0.0444 0.0047 0:0019

19. 0:0001 0:0000 0:0000 0.0086 0:0000 0:0000

20. 0:0000 0.1063 0.0156 0:0000 0.0054 0.0331

21. 0.0034 0.1996 0.1351 0:0014 0.0600 0.0179

22. 0.2738 0.2567 0.2220 0.4978 0.2315 0.2890

23. 0.1414 0.3506 0.2861 0.8267 0.0897 0.1657

24. 0:0000 0.0068 0:0003 0:0000 0:0002 0:0000

The first three columns display posterior mean p-values for the Bayesian analyses based on the posterior
draws of the ~h; and the latter three columns show the p-values resulting from likelihood analyses using the
mean response of all but the item in question as the health measure. Scenario A treats the item response as
quantitative and the health measure as quantitative; Scenario B treats the item response as multinomial and
the health measure as categorical; and Scenario C treats the item response as multinomial and the health
measure as quantitative. The boxed p-values are significant at the 0.05 level with a Bonferroni adjustment
for each of the 24 items
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columns of Table 4 (the corresponding methods above are labeled Scenarios A, B and C on

the table).

In addition to the three analyses above, we performed three likelihood-based analyses

that paralleled the Bayesian analyses. Our likelihood analyses for item j involved

replacing ~hðmÞi with �Yið�jÞ ¼ 1
J�1

P
‘ 6¼j Yi‘ in each instance. Thus, each of our likelihood-

based p-values was the result of comparing a model that regressed Yij on �Yið�jÞ and gi,

assessing the significance of gi. The use of �Yið�jÞ as a proxy for the latent measure has

been used conventionally, as in Junker (1993), Zhang and Stout (1999), and Hoijtink

(2001). As our likelihood analyses parallel the Bayesian analyses, we examine the results

of three sets of models depending on whether both Yij and �Yið�jÞ are treated as quanti-

tative, whether both are treated as categorical variables, or whether Yij is categorical

while �Yið�jÞ is quantitative. The results of these analyses are presented in the final three

columns of Table 4.

The likelihood-based and posterior mean p-values in Table 4 reveal that the Bayesian

diagnostic tends to be slightly more conservative than the likelihood-based diagnostic, as

the latter tends to produce smaller values. Treating p-values that were significant at the

0.05 level, accounting for a Bonferroni adjustment of 24 items (that is, p-values that were

less than 0.05/24 = 0.0021), as evidence of DIF between the English and Spanish versions

of the BASIS-24, a greater number of items were flagged by the likelihood-based method.

These p-values are highlighted on Table 4. Not surprisingly as well, Scenario B generally

results in the largest p-values among the three modeling scenarios because both the Yij and

the health measure are treated as categorical variables, while Scenario A tends to produce

the most significant p-values as both the Yij and the health measure are modeled as

quantitative variables. Scenario B of the likelihood analyses corresponds to the most

common procedure involving log-linear models, and results in identifying six items

exhibiting DIF. We suggest that Scenario C of the Bayesian approach, which models the Yij

as multinomial and incorporates the effect of ~hi as a smoothing spline relationship, is the

most consistent with modeling assumptions. This particular posterior mean p-value iden-

tifies five items as evidencing DIF, and these are a subset of the six identified in Scenario B

of the likelihood analysis. It is interesting to note that the BASIS-24 item that is identified

in the likelihood analysis to exhibit DIF but not in the Bayesian analysis (item 6) has

markedly differently p-values.

Considering the five items exhibiting DIF, several points are noteworthy. Items 15 and

17 (‘‘hear voices or see things,’’ and ‘‘think people were watching you’’) are both part of

the psychotic symptoms domain. The DIF found for some psychotic symptoms is con-

sistent with other reports in the literature suggesting that psychotic symptoms such as

hearing voices or seeing things may reflect Latino cultural or spiritual beliefs rather than

signs and symptoms of psychotic disorders (Geltman et al. 2004; Guarnaccia et al. 1992;

Vega et al. 2006). One item exhibiting DIF (item 19, feel short-tempered), proved espe-

cially difficult to translate. There is no Spanish equivalent to the English term ‘‘short-

tempered.’’ The closest approximation was the Spanish word ‘‘irritable,’’ which translates

to irritable in English. Consequently, DIF may have occurred due to the inadequacy of the

translation of this term. Reasons for DIF on the remaining two items (getting along with

people in your family and having problems from drinking or drug use) are unclear, as there

appeared to be no difficulty with translation, and no obvious cultural influences on the

understanding of these areas. Further research is needed to determine whether DIF on these

items can be accounted for by other factors such as acculturation, education or other

variables.
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5 Discussion

The method described in this paper to detect DIF in multi-item health surveys is both a

flexible and computationally feasible approach compared with alternative methods. Our

method relies on fitting a single Bayesian IRT model and saving Monte Carlo simulated

health parameters from the fit, followed by performing a separate analysis that examines

whether the DIF grouping variable is predictive of survey responses beyond the health

parameters. Each of these steps can be implemented using standard statistical software. An

attractive feature of our approach is that it explicitly incorporates the uncertainty in the

latent health measure in detecting DIF through repeated evaluations of the likelihood ratio

p-value averaged over the Monte Carlo simulated vectors of ~h:
An important difference between our approach and more conventional approaches is

that, because we fit an IRT model before carrying out DIF diagnosis, inferences about the

latent health status are formed using information from all item responses, not excluding the

item about which DIF detection is being performed. This is mainly due to construction; our

method allows for examining DIF on a variety of groupings after the IRT model has been

fit. At worst, incorporating information from all responses in the IRT model might result in

slightly more conservative inferences about DIF for each item, but this small loss in

efficiency is offset by a gain in computational simplicity through the need to fit only one

IRT model. However, based on the simulation analyses, it appears that a combination of

larger data sets along with a large fraction of items with DIF can increase the false positive

rate of DIF detection because the health parameters are not inferred correctly.

Another notable feature of our two-step approach is that the relationship of the response,

Yij, and the latent health measure, ~hi; in the IRT model is patently different from the more

flexible relationship assumed in the posterior mean p-value computation. The reason for

this approach is that detecting DIF is a diagnostic procedure that uses the ~hi as a proxy for

latent health rather than specifically as an IRT model parameter, so that the approach to

assess conditional independence between the response and DIF grouping can treat ~hi in a

flexible relationship. In this manner, our approach has connections with the Mantel–Ha-

enszel non-parametric approach.

Because our method separates model fitting and DIF assessment, many extensions to

our approach are straightforward to implement. For example, assessing DIF as the com-

parison among more than two groups (i.e., treating gi as a categorical variable with an

arbitrary number of levels) poses no difficulties, as the likelihood ratio computation would

simply incorporate gi as a categorical variable appropriately. Differential test functioning,

in which some or all items of a multi-item survey or test are combined as a weighted

combination (or simply as an unweighted sum) to produce clinically meaningful survey

summaries also pose no difficulties for our approach. After the IRT model is fit to the

response data as usual, the likelihood ratio comparison of non-parametric regressions

would then involve replacing individual items Yj by subscale scores or entire survey scores,

and posterior mean p-values would then be computed in the usual manner. Our method

could also be extended to multi-dimensional IRT models (see Gardner et al. 2002, for a

multidimensional extension of the Samejima model), in which hi is a vector-parameter;

MCMC-simulated draws of the hi are retained, and the posterior mean p-value are com-

puted as the comparison of the two non-parametric multiple regressions of the Yij on the hi

alone and with the gi.

Several limitations of our approach are worth noting. With great flexibility to choose a

particular model to assess conditional independence (choice of categorizing variables,

particular smoother for the ~hi), the conclusions about items exhibiting DIF may depend
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heavily on the choice. In the BASIS-24 analysis, Table 4 shows that treating the responses

as quantitative usually yields much lower posterior mean p-values than the categorical

response models. The two categorical response DIF analyses have a greater degree of

agreement in the conclusions, but in some cases the p-values can be on the order of a factor

of 10 apart, or higher (e.g., BASIS-24 items 4 and 17). Also, our method (as with most

other IRT approaches) relies heavily on the IRT model being a reasonably correct repre-

sentation of the data, and being properly specified (e.g., correctly incorporating covariate

information, correct parameterization of discrimination and difficulty parameters, etc.). In

particular, most DIF diagnostics, including ours, assume that when evaluating a specific

item, other items are free of DIF. This is not ever likely to be the case, so a tacit assumption

is that the number of items where DIF may be problematic is minimal. On the positive side,

model misspecification will likely lead to more uncertain posterior inferences about the ~hi;
so that the diagnostic analyses using posterior samples will in turn lead to insufficient

evidence of DIF. Thus our method is protective of false positives in the event that IRT

models are inappropriately specified. But with an IRT model that has undergone appro-

priate model diagnosis and criticism, our method for detecting DIF is worthy of

consideration.
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