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Dynamic paired comparison models with
stochastic variances

MARK E. GLICKMAN, Boston University, Boston, MA 02215, USA

abstract In paired comparison experiments, the worth or merit of a unit is measured
through comparisons against other units. When paired comparison outcomes are collected
over time and the merits of the units may be changing, it is often convenient to assume
the data follow a non-linear state-space model. Typical paired comparison state-space
models that assume a ® xed (unknown) autoregressive variance do not account for the
possibility of sudden changes in the merits. This is a particular concern, for example, in
modeling cognitive ability in human development; cognitive ability not only changes over
time, but also can change abruptly. We explore a particular extension of conventional
state-space models for paired comparison data that allows the state variance to vary
stochastically. Models of this type have recently been developed and applied to modeling
® nancial data, but can be seen to have applicability in modeling paired comparison data.
A ® ltering algorithm is also derived that can be used in place of likelihood-based
computations when the number of objects being compared is large. Applications to National
Football League game outcomes and chess game outcomes are presented.

1 Introduction

Paired comparison data arise when objects are compared to elicit a preference or
a degree of preference. The literature on paired comparison modeling is vast,
spanning ® elds such as statistics, marketing, psychology and decision sciences.
Background on fundamental issues in paired comparison modeling along with
examples can be found in David (1988) and Bradley (1984). A common situation
is to observe paired comparison data over time where the underlying value or
worth of the objects are changing. This might occur, for example, in comparing
preferences towards the value of marketed products or services, or in the outcomes
of games played between competitors whose abilities may be changing over time.
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Recent works by Glickman (1993, 1999), Fahrmeir & Tutz (1994) and Knorr-
Held (2000) have adopted a state-space approach to modeling such data where
the underlying merit parameters change as a Gaussian stochastic process. While
this approach can often appropriately describe the change in merits, it can be too
restrictive if the merits can undergo sudden shifts, or if interventions occur that
change the merit of an object quickly. For example, in a marketing context, if a
product is reported to be defective or dangerous, it will likely lose merit quickly.
When comparing human cognitive skill through games such as chess, younger
players may undergo quick increases in ability (Simonton, 1997), which the simpler
state-space models cannot capture.

This paper describes an extension of the usual state-space models for paired
comparison data that allows for sudden movement in the underlying merit para-
meters. The extension is closely related to the stochastic volatility model ( Jacquier
et al., 1994; Capobianco, 1996; Uhlig, 1997) developed in the context of modeling
® nancial time series data. Our model involves letting not only the merit of objects
change stochastically, but also letting the variance of the state process change
stochastically. In this extension, sudden shifts in merit are re¯ ected through the
variance of the change in merits becoming large. In Section 2, the model allowing
the variance of the state process to vary stochastically is developed. This is followed
in Section 3 by an application of the model to a data set on football game outcomes.
A ® ltering algorithm is then presented in Section 4, extending an algorithm
developed in Glickman (1999), which approximates likelihood-based computations
using nearly closed form calculations. A situation in which one might want to use
such an algorithm is when many objects are being compared, or many time periods
are involved, so that exact likelihood-based methods become computationally
intractable. This approach is demonstrated in Section 5 on a data set consisting of
chess games played among the best players of all time. We provide a summary of
the model and consider directions for extensions in Section 6.

2 A stochastic variance paired comparison model

Suppose K
(t)
ij comparisons are to take place between objects i and j at time t. Time

is assumed to be discretized into periods of equal duration, so that t, which indexes
a time interval, takes on integer values. We treat data observed within a time period
as occurring at the start of the period. Let Y

(t)
ijk be 1 if i is preferred to j in the kth

comparison between the two objects at time t, and 0 if j is preferred. Let c (t)
i and

c (t)
j be the merits of the objects at time t. We assume for ® xed t that the probability

i is preferred to j during the kth comparison, given by

P(Y
(t)
i jk 5 1) 5 F(c (t)

i 2 c (t)
j , h , x

(t)
i , x

(t)
j ) (1)

where F is a speci® ed probability function monotonically increasing in c (t)
i 2 c (t)

j , h

is a vector of other model parameters and x
(t)
i and x

(t)
j are covariate information for

objects i and j at time t. This model, the linear paired comparison model, assumes
that preference probabilities are functions of the merit parameters only through
their diþ erence. When there are no other model parameters or covariates, two
common special cases of this model include the Bradley- Terry model (Bradley &
Terry, 1952) when F is a standard logistic distribution function, and the Thurstone-
Mosteller model (Thurstone, 1927; Mosteller, 1951) when F is a Gaussian
distribution function. In practice, the choice among paired comparison models can
usually be assessed only with a large amount of data (Stern, 1992). The model
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speci® cation in equation (1) is suý ciently general to include many extensions of
basic linear paired comparison models.

The parameters c (t)
i are assumed to change over time through a stochastic process.

Our model assumes for each object i,

c (t + 1)
i

½ c (t)
i , r 2(t + 1)

i
~ N(c (t)

i , r 2(t + 1)

i ) (2)

so that the innovations in merit follow a normal distribution centered at zero, and
with a variance that depends on time. Alternative formulations of this component
of the model can allow for an autoregressive parameter, as we demonstrate in
Section 3, or a multivariate model that imposes linear restrictions. The latter
formulation was adopted in Glickman & Stern (1998).

We further assume a model for the change in variance,

log r 2(t + 1)

i
½ r 2(t)

i , s 2 ~ N(log r 2(t)

i , s 2) (3)

This aspect of the model allows for the innovations in the process for c (t)
i to have a

variance that may be stochastically varying. Because adding the same constant to
all the c (t)

i results in an equivalent model speci® cation, an additional assumption is
necessary to ensure identi® ability. This can be accomplished by assuming

c (0)
i

½ x 2 ~ N(0, x 2) (4)

with a proper prior density assumed for x 2 , so that the c (t)
i at t 5 0 may be viewed

as drawn from a common distribution centered at zero.
Assuming I objects and T time periods, the likelihood for this model can be

written as

L(c , r 2 , h , s 2 , x 2 ½ y, x) 5 ( *
I

i 5 1
N(c (0)

i
½ 0, x 2) )

3 *
T

t 5 1
( *

i< j

*
K

(t)
ij

k 5 1
F(c (t)

i 2 c (t)
j , h , x

(t)
i , x

(t)
j )y

(t)
ijk

(5)

3 (1 2 F(c (t)
i 2 c (t)

j , h , x
(t)
i , x

(t)
j ))1 2 y

(t)
ijk )

3 *
T 2 1

t 5 0

*
I

i 5 1
N(c (t + 1)

i
½ c (t)

i , r 2(t)

i )N(log r 2(t + 1)

i
½ log r 2(t)

i , s 2)

where c and r 2 are the arrays of the c (t)
i and r 2(t)

i , and N(´ ½ ´ , ´) is a normal density
of the ® rst argument with the given mean and variance.

Together with equation (1), equations (2) and (3) form a state-space model with
a stochastic variance for paired comparison data. This model can be viewed as an
extension of the more usual constant variance model, where r 2(t)

i 5 r 2 is assumed
for all i and t, in which case equation (3) is no longer a component of the model.
The constant variance model has been analyzed by Glickman (1993, 1999) and
Fahrmeir & Tutz (1994). An important limitation of the constant variance model
is that it does not account for the possibility of sudden shifts, innovations, or
periods of uncertainty in the process for the c (t)

i . For example, in modeling the
development of human expertise, one might expect bursts of cognitive development
that would not be predicted by the constant variance model. In a marketing
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context, the worth of a product may change suddenly relative to its competitors,
and this change may be poorly described by the constant variance model.

The model for the time-varying variance has close connections with stochastic
volatility models from ® nance (e.g. Jacquier et al., 1994). Recent work in modeling
of ® nancial time series data has explored the applicability of stochastic volatility
models in which the variance of a portfolio index or stock price is assumed to be
changing according to equation (3). A major diþ erence between our model and
more conventional stochastic volatility models is that stochastic volatility assumes
the variance of observations is changing, whereas in our model the variance of the
process governing the merits is changing. Because the observations in our model are
the results of preferences, and are therefore binomial, the variance of observations is
determined from the mean. Thus, in the paired comparison situation, it would not
be meaningful to assume a stochastic process on the observation variance except
as it is translated through the process on the merit parameters. It does make sense
in our situation to assume that the underlying process on the merits can undergo
sudden shift, and this can be captured through a process assumed on the variance
of the merit process.

Model ® tting can be accomplished in a Bayesian framework through Markov
chain Monte Carlo (MCMC) simulation from the posterior distribution. A choice
of a prior distribution, convenient for model ® tting, would assume a product of
independent inverse-Gamma densities for s 2 and x 2 with low degrees of freedom
to re¯ ect initial uncertainty, and a non-informative density (e.g. normal with large
variance, or uniform) on h . Note that the c (t)

i have distributions that are already
speci® ed conditionally. Assuming the functional form of F in equation (1) is
tractable (e.g. the Bradley-Terry model, the Thurstone- Mosteller model, or various
extensions), then, given s 2, x 2 and the r 2(t)

i for all i and t, the conditional posterior
distribution of the remaining parameters has a form that is common to non-
linear state-space models. Recognizing that the Bradley- Terry and the Thurstone-
Mosteller models are particular examples of generalized linear models (Critchlow
& Fligner, 1991), implementation of the Gibbs sampling steps to simulate the c (t)

i

and h conditional on the r 2(t)

i can follow Zeger & Karim (1991), Karim & Zeger
(1992), Glickman (1993) and Oh (1997). Sampling the r 2(t)

i conditional on the
c (t)

i , s 2 and x 2 , a necessary step in MCMC algorithms for ® tting stochastic volatility
models, is straightforward and can be carried out as in Jacquier et al. (1994). When
the number of time periods is large, block-sampling strategies using the Metropolis-
Hastings algorithm can be employed as described in Shephard & Pitt (1997). The
conditional distributions of s 2 and x 2 given the remaining parameters are inverse-
Gamma, so that sampling for this step can be performed directly.

3 Example: NFL football game outcomes

The model of Section 2 can be applied to a data set consisting of NFL football
game outcomes from regular season competition from 1996 to 2000. For the
football data, the merit (or strength) c (t)

i of a team can be inferred through game
outcomes, which are the results of paired comparisons. The results of NFL football
games are individual scores, and the team that wins is the one with the higher
score. Speci® cally, the outcome of the kth comparison between teams i and j at
time t, Y

(t)
ijk, is 1 if player i defeats j, and 0 if player j defeats i. Very rarely does the

outcome of a football game result in a tie. Only two ties occurred during regular
season games between 1996 and 2000, both of which took place in 1997. These
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two games were removed from the analysis. Dynamic models for NFL football
games have been examined by Glickman & Stern (1998), Harville (1980) and
Sallas & Harville (1988), treating the score diþ erence as the outcome of interest.
In this discussion, the binary indicator of the winning team is the outcome variable.

The data we examine consist of all decisive game outcomes from 1996 to 1999,
and the ® rst 10 weeks of game outcomes from 2000, resulting in a total of 1109
games played among 31 teams. One of the teams, the Cleveland Browns, reformed
in 1999, so that only 30 teams were included in our data set for 1996- 98. For our
analysis, game outcomes are grouped into periods of 1 year. We therefore assume
that team strengths remain constant within a regular season, but may vary between
seasons. During a season, each team plays 16 games. Because teams competing on
their home ® eld are understood to have an advantage (e.g. see Glickman & Stern,
1998), the eþ ect of home ® eld is modeled through an order eþ ect following
Davidson & Beaver (1977). In game k played during season t between teams i and
j, let

x
(t)
i jk 5 { 1 if team i plays on its home field

2 1 if team j plays on its home field

The model for game outcomes is given by

P(Y (t)
i jk 5 1) 5

exp(c (t)
i

+ x
(t)
i jk b )

exp(c (t)
i

+ x
(t)
ijk b ) + exp(c (t)

j )
(6)

where b is the eþ ect of playing on the home ® eld.
For NFL football games, a tendency exists for team strengths to regress to the

mean over time. This happens because strong teams have good players who age
and therefore become slightly worse over time. Furthermore, poor teams obtain
better chances at selecting strong players during the draft lottery, and therefore
tend to improve. Letting q denote an autoregression parameter, we assume

c (t + 1)
i ½ c (t)

i , r 2(t + 1)

i , q ~ N( q c (t)
i , r 2(t + 1)

i ) (7)

so that merit parameters move on average towards zero, assuming the magnitude
of q is inferred to be less than unity. As before, the model for equation (3) describes
the change in r 2(t)

i over time. A vague but proper prior is assumed for all model
parameters. The reciprocal of the variances is modeled following a Gamma
distribution with mean 1 and variance 10.

In addition to ® tting the stochastic variance model of equation (3), we also ® t a
constant variance model assuming

c (t + 1)
i

½ c (t)
i , r 2 , q ~ N( q c (t)

i , r 2) (8)

where r 2 is a single variance governing the change in c (t)
i over time. A vague but

proper prior distribution is assumed for r 2 in our analysis.
Both models were ® t by MCMC simulation, with burn-in periods of 20 000

iterations, at which point the model was diagnosed to have reached stationarity
through trace plots and informal diagnostics (e.g. Geweke, 1992). Model summar-
ies were computed based on the empirical distribution of simulated parameter
values for every 100th draw for 2000 000 iterations beyond the 20 000th iteration,
resulting in 2000 draws per parameter. Only every 100th simulated value was saved
to conserve disk space, and to reduce the eþ ect of autocorrelation of successive
parameter draws. Because the size of the problem is relatively small (31 teams with
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Table 1. Posterior summaries for regular NFL season 2000 team strengths*

Constant variance Stochastic variance

Team Posterior mean Posterior SD Posterior mean Posterior SD

Tennessee Titans 1.127 0.5487 1.529 0.8355
Minnesota Vikings 0.824 0.5287 1.072 0.7036
Miami Dolphins 0.7841 0.5199 0.8892 0.6567
Oakland Raiders 0.7585 0.5394 0.988 0.777
Indianapolis Colts 0.581 0.5112 0.7729 0.6636
New York Jets 0.5222 0.5176 0.6793 0.6467
Saint Louis Rams 0.5105 0.5171 0.5209 0.6716
Buþ alo Bills 0.4992 0.5113 0.5639 0.5895
New York Giants 0.4724 0.5128 0.5952 0.6581
Tampa Bay Buccaneers 0.3795 0.5132 0.3896 0.5633
Washington Redskins 0.3228 0.4892 0.3448 0.5422
Kansas City Chiefs 0.3093 0.5223 0.3431 0.5929
Detroit Lions 0.2102 0.4853 0.2991 0.563
Baltimore Ravens 0.1549 0.4894 0.1766 0.5888
Pittsburgh Steelers 2 0.01381 0.521 0.001656 0.6053
Jacksonville Jaguars 2 0.02185 0.5374 2 0.3095 0.6729
Philadelphia Eagles 2 0.04988 0.5073 0.04097 0.5818
Green Bay Packers 2 0.05577 0.5134 2 0.1259 0.5863
New Orleans Saints 2 0.1552 0.5092 2 0.1256 0.6641
Denver Broncos 2 0.1787 0.5208 2 0.3635 0.6442
Dallas Cowboys 2 0.1959 0.5072 2 0.3262 0.5812
New England Patriots 2 0.3066 0.5081 2 0.3637 0.6058
Carolina Panthers 2 0.3517 0.5059 2 0.5142 0.5987
Seattle Seahawks 2 0.3547 0.5086 2 0.4364 0.5791
Atlanta Falcons 2 0.601 0.517 2 0.9391 0.6883
Chicago Bears 2 0.6011 0.507 2 0.6242 0.6144
San Diego Chargers 2 0.7667 0.5215 2 1.127 0.7829
Arizona Cardinals 2 0.8509 0.5322 2 1.189 0.7225
San Francisco 49ers 2 0.8653 0.5199 2 1.382 0.7459
Cincinnati Bengals 2 0.9366 0.5491 2 1.232 0.7378
Cleveland Browns 2 1.129 0.5391 2 1.625 0.7722

*The ® rst two columns display model summaries for the constant variance dynamic model, and the
second two columns display summaries for the stochastic variance dynamic model.

® ve time-varying strength parameters), autocorrelation of the MCMC chain was
not a problem.

Posterior model summaries for the strength parameters in the 2000 season for
each model are displayed in Table 1. The table ranks teams according to the
posterior means under the constant variance model. Posterior means are compar-
able between models, with slightly greater spread of means in the stochastic
variance model. While most of the teams rank similarly in both models according
to the posterior means, the stochastic variance model infers that the Jacksonville
Jaguars were worse in 2000 than in the constant variance model. This inference is
made because the Jaguars in 2000 were having an unusually poor season relative
to previous years, and the stochastic variance model downweighted the impact of
previous seasons’ game outcomes in determining the eþ ect on the 2000 season.

It is noteworthy that the posterior uncertainty of the strength parameters, under
the constant variance model, is roughly constant, with slightly greater posterior
standard deviations for teams that are relatively strong and relatively weak. In
comparison, the posterior standard deviations under the stochastic variance model
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Fig. 1. Model summaries for the Atlanta Falcons. Top: posterior means for the c (t)
i in the constant

variance model, with pointwise approximate 95% central posterior intervals. Middle: posterior means
for the c (t)

i in the stochastic variance model, with pointwise approximate 95% central posterior intervals.
Bottom: posterior means for the r

2
(t)

i .

are larger, and vary more in magnitude. This variation is attributable to somewhat
larger inferred changes in strength over time, which results in inferred values for
r 2(t)

i typically larger than average. For example, the Jaguars’ posterior standard
deviation under the stochastic variance model is large compared with other teams’
posterior standard deviations, re¯ ecting the sudden decline in strength in 2000.
Further evidence of the eþ ect of sudden shifts in performance can be seen in Figs
1 and 2. Figure 1 shows model summaries for the Atlanta Falcons, who were a
below-average team through most of the 1990s, and then suddenly had a strong
performance in 1998 (they played in the Superbowl that season, but lost). The
plots indicate that the stochastic variance model allowed a greater change in the
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Fig. 2. Model summaries for the Seattle Seahawks. Top: posterior means for the c
(t)
i in the constant

variance model, with pointwise approximate 95% central posterior intervals. Middle: posterior means
for the c

(t)
i in the stochastic variance model, with pointwise approximate 95% central posterior intervals.

Bottom: posterior means for the r 2
(t)

i .

strength parameter for the Falcons in 1998 compared with the constant variance
model. The pointwise posterior standard deviations are also larger than in the
constant variance model, re¯ ecting the extra uncertainty in the c (t)

i due to the
sudden change in performance. In contrast, Fig. 2, which shows analogous informa-
tion for the Seattle Seahawks, demonstrates that the stochastic variance model
behaves similarly to the constant variance model when a team’s performances
remain stable. The posterior mean of the c (t)

i and the pointwise posterior standard
deviations are similar for both models. Compared to the stochastic variance model
summaries for the Falcons, the posterior means of the r 2(t)

i for the Seahawks are
much lower, which is consistent with the lack of substantial changes in the c (t)

i .
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Inference for the autoregression parameter, q , reveals that substantial regression
to the mean occurred over the ® ve seasons. For the constant variance model, a
Monte Carlo 95% central posterior interval is (0.294, 0.803). The corresponding
interval for the stochastic variance model is (0.217, 0.752). The large posterior
variability in q indicates a lack of substantial information in the data about this
parameter in both models. In either case, the data provide evidence that team
strength does shrink, on average, towards the mean over time. Inferences for the
home ® eld eþ ect parameter, b , are comparable for both models. For the constant
variance model, a 95% central posterior interval for b is (0.1514, 0.4052), and for
the stochastic variance model (0.1602, 0.4399). The positive value con® rms that
an advantage exists for playing on the home ® eld.

4 Analysis for comparing many objects

When many objects are being compared over time, an exact likelihood-based
approach (e.g. maximum likelihood, Bayesian analysis) may become computa-
tionally intractable. For example, when rating populations of chess players, or
competitors in online gaming systems which can attract tens of thousands of
players, a likelihood-based analysis would not be possible to perform in real time.
Instead, a simple forward ® ltering algorithm may be preferable. Glickman (1999)
develops an approximate Bayesian analysis for the constant variance model in
which the c (t)

i are updated sequentially with the acquisition of new data. The result
of this analysis is an approximation to the marginal posterior distribution for the
most recent merit parameter for any object. Rather than perform an analysis that
jointly infers all parameters simultaneously, the approach taken in Glickman (1999)
involves updating the merit parameter of an object by integrating out information
about other objects through the prior distribution rather than the posterior distribu-
tion. While this approach results in a loss of eý ciency, there are computational
advantages that allow for the derivation of a simple algorithm. The procedure in
Glickman (1999) can be extended to the stochastic variance model.

The algorithm to update objects’ merit parameters proceeds in the following
manner. It is assumed in the algorithm that s 2 (the variance of the change in
log r 2(t)

i over time) and x 2 (the variance of the c (0)
i ) have been estimated and ® xed

in advance. This can be accomplished by ® tting the model using an exact likelihood
procedure to a set of data of manageable size, and determining the values of s 2 and
x 2 that maximize the marginal posterior distribution of these two parameters. For
the remainder of the development, these parameters are assumed ® xed.

(1) At the end of the time period t 2 1, each object’s merit parameter, c (t 2 1)
i has

an approximating normal marginal posterior distribution with known mean
l (t 2 1)

i and variance u 2(t 2 1)

i . Also, each object has a current (and known)
variance parameter, r 2(t 2 1)

i , describing the variability of the time change in
merit for that object.

(2) Collect all comparisons during time period t (time periods are assumed to
be equally spaced).

(3) For each object individually, perform appropriate calculations (described
below) to determine the updating of r 2(t 2 1)

i to r 2(t)

i , and then the updating of
l (t 2 1)

i to l (t)
i and u 2(t 2 1)

i to u 2(t)

i . These are the new parameters for the distribu-
tion of c (t)

i .

These calculations are repeated for each time period as data are observed.
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To understand the calculations that result in an estimate of r 2(t)

i , suppose an
object in question has a merit c (t 2 1) that can be summarized at time t 2 1 by the
marginal posterior distribution

c (t 2 1) ~ N( l (t 2 1), u 2(t 2 1)

) (9)

Assume that, during period t, this object is compared to others indexed by
j 5 1, . . . , m, with marginal posterior distributions

c (t 2 1)
j

~ N( l (t 2 1)
j , u 2(t 2 1)

j ) (10)

The stochastic variance model assumes

c (t) ~ N(c (t 2 1), r 2(t)

) (11)

log r 2(t) ~ N(log r 2(t 2 1)
, s 2) (12)

Further, let c Ã (t) be the maximum value of c (t) in the likelihood for period t, integrated
over the prior distribution of the other objects’ c (t)

j , and let m 2 be the associated
asymptotic variance of c Ã (t) from the marginalized likelihood. When integrating over
the distribution of the other objects’ merits, we assume log r 2(t)

j 5 log r 2(t 2 1)

j for
object j, even though this is only true in expectation. Both c Ã (t) and m 2 can be
computed using iterative numerical procedures (though an approximation is used
in the algorithm that follows). The distribution of c Ã (t) can be approximated by

c Ã (t) ~ N(c (t) , m 2) (13)

Combining equations (9), (11) and (13), integrating out c (t 2 1) and c (t), and for
notational convenience letting a (t 2 1) 5 log r 2(t 2 1)

and a (t) 5 log r 2(t)

, we have

c Ã (t) ~ N( l (t 2 1), u 2(t 2 1) + exp(a (t)) + m 2) (14)

From equation (12), we have

a (t) ~ N(a (t 2 1), s 2) (15)

Noting that all other parameters are known, the approximate marginal posterior
density of a (t) is the product of the densities in equations (14) and (15), so that the
marginal log-posterior, up to an additive constant, is given by

log p(a (t) ½ y
(t)) 5 2

1

2

(a (t) 2 a (t 2 1))2

s 2

(16)

2
1

2
log( u 2(t 2 1) + exp(a (t)) + m 2) 2

1

2

(c Ã (t) 2 l (t 2 1))2

u 2(t 2 1) + exp(a (t)) + m 2

where y
(t) denotes the collection of comparison outcomes during time period t.

Rather than compute c Ã (t) and m 2 numerically, we use approximations derived in
Glickman (1999). In particular, we approximate (c Ã (t) 2 l (t 2 1)) by a Taylor series
expansion through the linear term, and approximate m 2 by the curvature around
l (t 2 1) rather than c Ã (t). This yields

c Ã (t) 2 l (t 2 1) » m 2 +
m

j 5 1

+
nj

k 5 1
g( u 2(t 2 1)

j ) {y
(t)
jk 2 E(y ½ l (t 2 1), l (t 2 1)

j , u 2(t 2 1)

j )} (17)

with

m 2 » f +
m

j 5 1
njg( u 2(t 2 1)

j )2E(y ½ l (t 2 1), l (t 2 1)
j , u 2(t 2 1)

j ) {1 2 E(y ½ l (t 2 1), l (t 2 1)
j , u 2(t 2 1)

j )} g 2 1

(18)
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where y
(t)
jk is the result of the kth comparison of the object with object j during

period t, nj is the number of times the object is compared to object j and

g(u 2) 5
1

Î 1 + 3 u 2 /p 2

E(y ½ l , l j , u
2
j ) 5

1

1 + exp( 2 g( u 2
j ) ( l 2 l j))

The algorithm proceeds by estimating a (t) (and therefore r 2(t)

) by maximizing over
equation (16). This can be accomplished using a numerical algorithm. For example,
because the ® rst term in (16) is maximized by a (t) 5 a (t 2 1), and the second two
terms in (16) are maximized by setting

(c Ã (t) 2 l (t 2 1))2 5 u 2(t 2 1) + exp(a (t)) + m 2

so that a (t) 5 log((c Ã (t) 2 l (t 2 1))2 2 u 2(t 2 1)

) assuming

(c Ã (t) 2 l (t 2 1))2 2 u 2(t 2 1)
2 m 2 > 0 (19)

the Newton- Raphson algorithm will converge to the maximum quickly if the initial
value of a (t) is selected to be between a (t 2 1) and log((c Ã (t) 2 l (t 2 1))2 2 u 2(t 2 1)

). If
equation (19) is false, then the second two terms reach their supremum when
exp(a (t)) is set to zero. In this situation, because these latter two terms are bounded
above as a (t) ® 2 ` , the ® rst term dominates, and convergence of the Newton-
Raphson algorithm is quick when choosing an initial value of a (t) less than a (t 2 1).

Once r 2(t)
is estimated, we set u ¢ 2(t)

5 u 2(t 2 1) + r 2(t)
, which is the prior variance for

c (t) accounting for the passage of time from period t 2 1 to t. Now the algorithm of
Glickman (1999) may be applied directly to obtain l (t) and u 2(t)

, the marginal
posterior mean and variance of c (t), the merit parameter for the object in question.
These are given by

l (t) 5 l (t 2 1) + 1

1/u ¢ 2(t) + 1/m 2
+
m

j 5 1

+
nj

k 5 1
g( u 2(t 2 1)

j ) {y
(t)
jk 2 E(y ½ l (t 2 1), l t 2 1)

j , u 2(t 2 1)

j )}(20)

u 2(t)
5 ( 1

u ¢ 2(t)
+ 1

m 2 ) 2 1

(21)

Details of the derivations appear in Glickman (1999).
To assess the accuracy of the approximation algorithm, simulated data under

varying parameter values were generated, and nominal coverage was compared
with the results of simulations. We performed a total of 32 simulation sets, which
are summarized in Table 2. We considered two values (0, 0.5) for the prior mean,
l , four diþ erent numbers of comparisons, m, (10, 50, 200, 1000) and four diþ erent
values of the standard deviation for the change in log r 2(t)

, s (0, 0.3, 0.7, 1.2).
These values were chosen to span a plausible range of values that might be expected
in practice. For each ® xed combination of l , m and s , data were generated in the
following manner: values of u (t 2 1) and r (t 2 1) were ® xed at 0.173 and 0.0576,
respectively, so that a 95% prior interval around c (t 2 1) had length 2/3, and that the
standard deviation of the c (t 2 1) was three times larger than the standard deviation
in the change of the c (t 2 1) over time. A value of r 2(t)

was simulated conditional on
r 2(t 2 1)

and s , and then a value of c (t) was simulated given l (t 2 1), u (t 2 1) and r 2(t)

. For
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Table 2. Results of the approximating algorithm on simulated data*

Prior Number of
mean comparisons s 5 0 s 5 0.3 s 5 0.7 s 5 1.2

l 5 0 m 5 10 (0.5210, 0.9460) (0.4928, 0.9476) (0.4892, 0.9450) (0.4886, 0.9414)
m 5 50 (0.4942, 0.9498) (0.5026, 0.9562) (0.5042, 0.9504) (0.4794, 0.9414)

m 5 200 (0.5074, 0.9500) (0.4890, 0.9514) (0.4822, 0.9450) (0.4840, 0.9466)
m 5 1000 (0.4896, 0.9484) (0.4922, 0.9482) (0.4894, 0.9402) (0.4908, 0.9448)

l 5 0.5 m 5 10 (0.5048, 0.9524) (0.4912, 0.9504) (0.4968, 0.9440) (0.4932, 0.9384)
m 5 50 (0.5082, 0.9486) (0.5044, 0.9460) (0.5060, 0.9484) (0.4924, 0.9398)

m 5 200 (0.4984, 0.9466) (0.5034, 0.9540) (0.4924, 0.9472) (0.4930, 0.9436)
m 5 1000 (0.4988, 0.9498) (0.4918, 0.9472) (0.4914, 0.9446) (0.4868, 0.9460)

*For each analysis, 5000 replications were simulated and nominal 50 and 95% central posterior intervals
were constructed. The pairs of values in the parentheses for each analysis consist of the proportion of
5000 replications in which the simulated value c was contained in the nominal 50 and 95% intervals,
respectively.

the m other objects involved in the comparisons, the collection of l (t 2 1)
j was

simulated from a normal distribution with mean zero and standard deviation 0.173.
The u (t 2 1)

j and r (t)
j were generated from scaled v 2 distributions on 20 degrees of

freedom with means of 0.173 and 0.0576, respectively. Values of c (t)
j were generated

by the same process as c (t). Finally, the outcome of comparisons were generated
from the Bradley- Terry model given the generated values of the c (t) and the c (t)

j .
The algorithm was then applied (ignoring parameter values at time t) to determine
the parameters l (t) and u (t) of the approximating normal posterior to c (t). Approxi-
mate 50 and 95% normal central posterior intervals for c (t) were calculated as
l (t) 6 zu (t) with z 5 0.6745 or 1.96. It was noted whether the generated value of c (t)

was contained in this interval. This process was repeated 5000 times, and the
fraction of times in which the true parameter value was contained in the intervals
is summarized in Table 2.

The results of the simulations demonstrate that the algorithm produces close to
nominal coverage under varying conditions. Table 2 reveals that the nominal 50
and 95% posterior intervals contain roughly 0.5 and 0.95 of the generating value
of c (t). The accuracy of the approximation algorithm does not seem to change by
varying l . However, there appears to be a small loss of eý ciency when m becomes
larger and when s is at its largest. In these cases, the actual coverage is consistently
smaller than nominal coverage, indicating that the posterior intervals are not wide
enough. The discrepancy does not seem large enough to be of great practical
concern.

5 Example: best chess players of all time

The ® ltering algorithm of Section 4 can be applied to a data set consisting of all
known results of chess games from 1857 to 1991 played among 88 of the world’s
all-time best chess players. For chess data, the merit (or strength), c (t)

i , of a player
can be inferred through game outcomes, which are the results of paired compari-
sons. The outcome of the kth comparison between competitors i and j at time t,
Y

(t)
i jk, is 1 if player i defeats j and 0 if player j defeats i. The data set, which consists

of 15 664 outcomes of games played among 1367 pairs of players, was compiled
by Prof. Nathan Divinsky. Not all (88

2 ) 5 3828 pairs of players competed against
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each other due to non-overlapping chess careers. A detailed account of the data
appears in Keene & Divinsky (1989). Several models of chess playing strength
have been ® t by these data, including the models of Elo (1978), Joe (1990), Henery
(1992) and Glickman (1999).

For our analysis, we group game outcomes into periods of 1 year. We therefore
act as if all of the games were played simultaneously at the beginning of each year,
with innovations in merit and in variance changing over the remainder of the year.
The data consist of 135 periods, though some years (e.g. 1859, 1874 and 1875)
contain no game outcomes. For years in which no games were recorded, there is
no likelihood contribution from data in equation (5), though the terms for the
change in c (t)

i and r 2(t)

i still appear.
Unlike the football game data, one aspect of chess outcome data for which the

model must account is the existence of ties. Not only does this third possible paired
comparison outcome occur in chess, but it occurs frequently. Several extensions to
common paired comparisons models have addressed ties as a third outcome,
including the extensions by Davidson (1970) and Rao & Kupper (1967) to the
Bradley- Terry model, and by Greenberg (1965) for the Thurstone- Mosteller
model. Instead of treating a tie as a third outcome to the model, we adopt an
approach which acts as if ties are not really observed, but that they are viewed as
half the contribution of a win and a loss. In other words, we assume two ties
contain the same information about players’ strengths as a win followed by a loss
(or vice versa). Thus, if pi j is the probability that i defeats j, the contribution to the
likelihood of a tie would be Ï pi j(1 2 pi j). This approach to ties in paired comparisons
can also be found in Glickman (1999).

We carried out the ® ltering algorithm described in Section 4 on these data, and
also carried out the ® ltering algorithm in Glickman (1999) as a comparison.
Pilot MCMC algorithms were run to estimate initial parameter values by their
approximate posterior means. For the ® ltering algorithm described in Section 4, s

was set to 0.66, the initial r for each player was set to 0.05, and the prior
distribution of each player’s strength, c , was assumed Gaussian with mean and
standard deviation of 0 and 0.15, respectively. For the constant variance ® ltering
algorithm, r was set at 0.01054, and prior distribution for each player’s strength,
c , was assumed Gaussian with mean and standard deviation of 0 and 0.2027,
respectively.

The two models result in comparable inferences. In general, the ® ltered estimates
of the c (t)

i have large overlap across the two models. The typical trend for an
individual’s c (t)

i over time is low early in the player’s career, a peak in the middle
and then a slow decline towards the end. This ® nding is consistent with previous
analyses of this data set ( Joe, 1990; Glickman, 1999).

For the constant variance ® ltering results, a typical pattern is that the uncertainty
about the c (t)

i tends to decrease and stabilize as the player’s career progresses. The
stochastic variance ® ltering algorithm keeps the estimated posterior standard
deviation of the c (t)

i roughly constant. Also, the changes in the mean c (t)
i tend to be

smoother in the constant variance model, and the corresponding changes in the
stochastic variance model are often more jagged.

Inferences about two players’ careers help to illustrate the diþ erences between
the two algorithms. In Fig. 3, ® ltering results about Max Euwe are displayed, and
in Fig. 4 results about Robert Fischer are shown. Both players were world
champions for short periods (Euwe in 1935- 37 and Fischer 1972- 74). Euwe
continued playing long after his world championship reign, while Fischer quit
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Fig. 3. Model summaries for Max Euwe. Top: posterior means for the c (t)
i in the constant variance

® ltering procedure, with pointwise approximate 95% central posterior intervals. Middle: posterior
means for the c (t)

i in the stochastic variance ® ltering procedure, with pointwise approximate 95% central
posterior intervals. Bottom: estimates for the r

2
(t)

i .

professional chess arguably at the peak of his career. The plots show that the
estimates from the stochastic variance ® ltering algorithm change more abruptly
than in the constant variance model. This is re¯ ected in changes in the r (t)

i in the
stochastic variance algorithm. When Euwe had poor results in the late 1940s, the
stochastic variance algorithm had r (t)

i experience a corresponding increase to re¯ ect
the gain in uncertainty in Euwe’s true strength. Similarly, Fischer’s phenomenal
results in the world championship cycle in the early 1970s is shown in Fig. 4 by
an increase in the mean strength, but also in an increase in the value of r (t)

i .
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Fig. 4. Model summaries for Robert Fischer. Top: posterior means for the c
(t)
i in the constant variance

® ltering procedure, with pointwise approximate 95% central posterior intervals. Middle: posterior
means for the c

(t)
i in the stochastic variance ® ltering procedure, with pointwise approximate 95% central

posterior intervals. Bottom: estimates for the r 2
(t)

i .

6 Discussion

The dynamic paired comparison model presented in this paper extends previous
work by allowing the variance of the state process to change stochastically.
Considering such models increases the ¯ exibility to describe phenomena where the
underlying characteristics may undergo sudden shifts or changes in paradigm.
Fitting the stochastic variance model for paired comparison data can be carried
out using standard Bayesian computational machinery. For situations where many
objects are being compared over time, in which case a full likelihood analysis
may be too computationally intensive, this paper demonstrates an approximating
algorithm that can be carried out with far less of a computational burden.
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Aside from the increased ¯ exibility, the stochastic variance model has an impor-
tant bene® t over the constant variance model when, for example, it is suspected
that interventions may aþ ect the process for the merits. Under the constant variance
model, the variance in an object’s merit prior to observing data at time t must
decrease after the data are observed. This is a direct consequence of equation (21),
where the posterior variance must be less than the prior variance. However, under
the stochastic variance model, the variance may increase after data are observed.
This re¯ ects the increased uncertainty about the merit parameter after observing
unusual data.

A variety of extensions can be incorporated into the stochastic variance model.
One extension is to incorporate covariate information in the change in r 2(t)

i over
time. For example, in the context of human cognitive development, older people
may stabilize in merit so that the change in r 2(t)

i may be assumed to be negatively
related with age. Another extension involves using a diþ erent distribution other
than normal for describing the change in c (t)

i , and log-normal for describing the
change in r 2(t)

i over time. For example, in comparing certain types of ® nancial
products over time, it may be more reasonable to assume models describing a
greater probability for small increases in c (t)

i but occasional large decreases with
small probability. In each case, standard Bayesian tools can still be invoked to ® t
such model extensions.
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