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Abstract Women’s beach volleyball became an official Olympic sport in 1996 and con-
tinues to attract the participation of amateur and professional female athletes. The most
well-known ranking system for women’s beach volleyball is a non-probabilistic method
used by the Fédération Internationale de Volleyball (FIVB) in which points are accumu-
lated based on results in designated competitions. This system produces rankings which,
in part, determine qualification to elite events including the Olympics. We investigated
the application of several alternative probabilistic rating systems for head-to-head games
as an approach to ranking women’s beach volleyball teams. These include the Elo (1978)
system, the Glicko (Glickman, 1999) and Glicko-2 (Glickman, 2001) systems, and the
Stephenson (Stephenson and Sonas, 2016) system, all of which have close connections to
the Bradley-Terry (Bradley and Terry, 1952) model for paired comparisons. Based on the
full set of FIVB volleyball competition results over the years 2007-2014, we optimized
the parameters for these rating systems based on a predictive validation approach. The
probabilistic rating systems produce 2014 end-of-year rankings that lack consistency with
the FIVB 2014 rankings. Based on the 2014 rankings for both probabilistic and FIVB sys-
tems, we found that match results in 2015 were less predictable by examining the rate of
upsets using the FIVB system compared to any of the probabilistic system. These re-
sults suggest that the use of probabilistic rating systems may provide greater assurance of
generating rankings with better validity.
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1. Introduction

Beach volleyball, a sport that originated in the early 1900s, has been played
by athletes on a professional basis for over 50 years. The rules of competitive
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beach volleyball are largely the same as indoor volleyball with several notable
differences. Beach volleyball is played on a sand court with teams consisting of
two players as opposed to six in indoor volleyball. Matches are played as a best of
3 sets, in which each of the first two sets is played to 21 points, and the deciding
set (if the first two sets split) is played to 15 points. The popularity of beach
volleyball has led to regular organized international competition, with the sport
making first appearance into the Olympic games in 1996.

The main international organization governing volleyball competition is the
Fédération Internationale de Volleyball (FIVB). The FIVB originated in the 1940s,
and is involved in planning elite international volleyball tournaments including
the Olympic Games, the Men’s and Women’s World Championships, the World
Tour, various elite youth events. In addition to being the main organizers of many
professional beach volleyball tournaments organized worldwide, the FIVB coor-
dinates events with national volleyball organizations and with other international
athletic organizations such as the International Olympic Committee. The FIVB is
also responsible for the standardization of the rules of volleyball for international
competition.

One of the most important functions of the FIVB is the determination of
how teams qualify for international events, which is largely based on the FIVB’s
ranking system. FIVB rankings determine how teams are seeded on the World
Tour, thereby affecting their performance and tournament earnings, as well as
determining which teams compete in the Olympic Games. Currently, the FIVB
relies on an accumulation point system to rank its players. The system awards
points based on teams’ finishing place at FIVB tournaments, with the most points
being awarded to the highest-placing teams. Furthermore, greater point totals
are at stake at larger tournaments, such as World Championships or Grand Slam
tournaments.

The current FIVB ranking system has several desirable qualities, including
its simplicity and ease-of-implementation. Because the ranking system involves
fairly basic computation, the system is transparent. The system also behaves pre-
dictably, so that teams with better finishes in tournaments typically move up in the
FIVB rankings. The convenience of ranking teams according to such a system,
however, is not without its shortcomings. For example, because the FIVB system
awards points based solely on the final standings in a tournament, information
from earlier match results in a tournament does not play a role in computing rank-
ings. Many tournaments include only four to five rounds of bracket play, with
most teams only making it through one or two matches in this stage. Only the
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teams who advance further receive FIVB points. Pool play, meanwhile, often
represents the majority of the matches played by a team in a tournament, even
for those who make it into the championship bracket (many teams play only 1-2
bracket matches after 4-5 pool play matches). The results of matches in pool play
are not evaluated as part of the FIVB ranking calculation. Thus the FIVB system
misses out on key information available in individual match data from the entire
tournament.

In contrast to the FIVB ranking system, rating systems have been developed
to measure the probability of one team defeating another with the goal of accu-
rately predicting future match outcomes. Many of these approaches have arisen
from applications to games like chess, whose Elo system (Elo, 1978) and variants
thereof have been used in leagues for other games and sports such as Go, Scrabble,
and table tennis. The main difference between such probabilistic systems and the
point accumulation system of the FIVB is that all match results are incorporated
in producing team ratings, with each head-to-head match result factoring into the
computation. Furthermore, the probabilistic systems smoothly downweight the
impact of less recent competition results relative to more current ones. In the
FIVB system, tournaments older than one year do not play a role in the current
rankings, whereas in most probabilistic systems older match results are part of the
computation though they receive small weight. Reviews of different sports rating
systems, both of point accumulation systems and probabilistic ones, can be found
in Stefani (1997) and Stefani (2011).

In this paper, we compare the FIVB system to four probabilistic systems that
have been in use in other sports/games contexts. We examine the comparison of
these different rating systems applied to match data collected on women’s beach
volleyball. We describe in detail in Section 2 the FIVB system along with the
four probabilistic rating systems. This is followed in Section 3 by a description
of the women’s beach volleyball data and the implementation of the probabilistic
rating systems. In Section 4 we describe the results of our analyses. The paper
concludes in Section 5 with a discussion about the results, and the appropriateness
of using a probabilistic rating system for FIVB competition.

2. Rating volleyball teams

We describe in this section the point system used by the FIVB to rank players,
and then review the four probabilistic rating systems considered in this paper.
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2.1. FIVB tournaments

Typical FIVB events are organized as a combination of a phase of Round
Robin competition (pool play) followed by single elimination. For example, the
Main Draw Tournament (separately by gender) for FIVB Beach Volleyball World
Tour Grand Slam & Open is organized as 32 teams divided into eight pools of
four teams. The four teams within each pool compete in a Round Robin, and
the top 3 within each pool advance to a single elimination knockout phase, with
the top eight seeded teams automatically advancing to a second round awaiting
the winners of the 16-team first round. The losers of the semi-finals compete to
determine third and fourth place in the event.

The seeding of teams within events is computed based on information from
FIVB points earned at recent events. In particular, a team’s seeding is based on
Athlete Entry Points, which are the sum of the FIVB points for the teammates
earned from the best six of the last eight FIVB events within the year prior to 14
days before the tournament. In the case of ties, the ranking of teams based on sum
of FIVB points over the entire year (called the Technical Ranking) is used. Given
that the top eight seedings among teams who qualify for the elimination phase of a
tournament have a distinct advantage by not having to compete in a first round, the
ranking computation is an important component of competition administration.

2.2. FIVB point system

Beach volleyball players competing in FIVB-governed events earn FIVB
ranking points based on their performance in an event and on the category of the
event. The more prestigious the event, the greater the number of ranking points
potentially awarded. Table 1 displays the ranking points awarded per player on a
team based on their result in the event, and based on the event type.

Table 1 indicates that teammates who place first in the World Championships
will each earn 500 points, whereas finishing in first place at a Continental Cup will
earn only 80 points. Teams who finish tied in fifth through eighth place (losing in
the quarter-final round) all receive the same ranking points as indicated by the 5th
place row in the table. Because points earned in an event are based exclusively
on the final place in the tournament, and do not account for the specific oppo-
nents during the event, FIVB points can be understood as measures of tournament
achievement, and not as compellingly as measures of ability. Additionally, rank-
ings, seeding and eligibility are computed based on the accumulation of points
based on a hard threshold (e.g., only points accumulated in the last year) as op-
posed to a time-weighted accumulation of points. Thus, a team whose players had
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Open/Cont. Cont. Tour Cont. Tour Cont. Age
Tournament Senior Grand Tour Master/ Zonal/FIVB Cont. Group Homolgated

Rank World Ch Slam Final Challenger Age World Ch Cup Champs Nat’l Tour
1st 500 400 250 160 140 80 40 8

2nd 450 360 225 144 126 72 36 6
3rd 400 320 200 128 112 64 32 4
4th 350 280 175 112 98 56 28 2

5th-8th 300 240 150 96 84 48 24 1
9th-16th 250 180 120 80 70 40 20 0

17th-24th 200 120 90 64 56 32 16 0
25th-32nd - 80 60 48 42 24 12 0
33rd-36th 150 40 30 0 0 0 0 0
37th-40th 100 0 0 0 0 0 0 0

41st- - 20 15 0 0 0 0 0

Table 1: Point scores by event type and place achievement in FIVB competi-
tion.

an outstanding tournament achievement exactly 365 days prior to an event would
be high-ranked, but on the next day would lose the impact of the tournament from
a year ago.

The event-based FIVB points are used for a variety of purposes. In addition to
seeding teams, they are used for eligibility for international events. For example,
one qualification of teams to participate in the 2016 Olympics in Rio de Janeiro
involved determining an Olympic Ranking, which was the sum of teams’ FIVB
points over the 12 best performances from January 2015 through June 12, 2016.
Other factors were involved with the selection process, but the use of FIVB points
was an essential element.

2.3. Probabilistic approach to ranking

A major alternative to point accumulation systems is rating systems based on
probabilistic foundations. The most common foundation for probabilistic rating
systems is the class of linear paired comparison models (David, 1988). Suppose
team i and j are about to compete, and let yi j = 1 if team i wins and yi j = 0 if team
j wins. If we assume parameters θi and θ j indicating the strengths of each team,
then a linear paired comparison model assumes that

Pr(yi j = 1|θi,θ j) = F(θi−θ j) (1)
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where F is a continuous cumulative distribution function (cdf) with a domain over
R. Choices of F typically used in practice are a logistic cdf or a standard normal
cdf. In the case of a logistic cdf, the model can be written as

logitPr(yik = 1) = θi−θ j (2)

which is known as the Bradley-Terry model (Bradley and Terry, 1952). The model
was first proposed in a paper on tournament ranking by Zermelo (1929), and was
developed independently around the same time as Bradley and Terry by Good
(1955). The alternative when a standard normal distribution is assumed for F can
be expressed as

Φ
−1(Pr(yik = 1)) = θi−θ j (3)

which is known as the Thurstone-Mosteller model (Mosteller, 1951; Thurstone,
1927). Two general references for likelihood-based inference for the strength pa-
rameters for these models are David (1988) and Critchlow and Fligner (1991). In
linear paired comparison models such as Bradley-Terry and Thurstone-Mosteller,
a linear constraint is usually assumed on the strength parameters to ensure identi-
fiability such as that the sum of the strength parameters is 0.

Linear paired comparison models can be extended to acknowledge that teams
may change in strength over time. Glickman (1993) and Fahrmeir and Tutz (1994)
present state-space models for the dynamic evolution of team strength. The state-
space model framework assumes a linear probability model for the strength pa-
rameters at time t, but that the parameters follow a stochastic process that governs
the evolution to time t + 1. For example, an auto-regressive paired comparison
model may be implemented in the following manner. If θit is the strength of team
i at time t, then the outcome of a match between teams j and k at time t is given
by

Pr(y jk = 1|θ jt ,θkt) = F(θ jt −θkt) (4)

and that for all i = 1, . . . ,n (for n teams),

θi,t+1 = ρθit + εit (5)

where εit ∼ N(0,σ2) and |ρ| < 1. Bayesian inference via Markov chain Monte
Carlo simulation from the posterior distribution may be implemented as described
by Glickman (1993). Other approaches to team strength evolution can be devel-
oped on the θit following a flexible function, such as a non-parametric smoother.
Baker and McHale (2015) used barycentric rational interpolation as an approach
to model the evolution of team strength.
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One difficulty with likelihood-based inference (including Bayesian inference)
for time-varying linear paired comparison models is evident when the number of
teams, n, involved in the analysis is large. In such instances, the number of model
parameters can be unwieldy, and the computational requirements for model fitting
are likely to be challenging. Instead, a class of approximating algorithms for time-
varying paired comparisons have relied on filtering algorithms that update strength
parameter estimates based on current match results. These algorithms typically
do not make use of the full information contained in the likelihood, so inference
from these approaches is only approximate. However, the computational ease
is the major benefit for using these approaches, which have become popular in
settings for league competition that involve hundreds or thousands of competitors.
Below we present several rating algorithms that are in current use for estimating
competitor ability.

2.4. Elo rating system

In the late 1950s, Arpad Elo (1903-1992), a professor of physics at Marquette
University, developed a rating system for tournament chess players. His system
was intended as an improvement over the rating system in use by the United States
Chess Federation (USCF), though Elo’s system would not be published until the
late 1970s (Elo, 1978). It is unclear whether Elo was aware of the development of
the Bradley-Terry model, which served as the basis for his rating approach.

Suppose time is discretized into periods indexed by t = 1, . . . ,T . Let θ̂it be
the (estimated) strength of team i at the start of time t. Suppose during period t
team i competes against teams j = 1, . . . ,J with estimated strength parameters θ̂ jt .
Elo’s system linearly transforms the θ̂it , which are on the logit scale, to be on a
scale that typically ranges between 0 and 3000. We let

Rit =C+

(
400

log10

)
θ̂it

to be the rating of team i at the start of time period t, where C is an arbitrarily
chosen constant (in a chess context, 1500 is a conventional choice). Now define

We(Rit ,R jt) =
1

1+10−(Rit−R jt)/400 (6)

to be the “winning expectancy” of a match. Equation (6) can be understood as an
estimate of the expected outcome yi j of a match between teams i and j at time t
given their ratings.
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The Elo rating system can be described as a recursive algorithm. To update
the rating of team i based on competition results during period t, the Elo updating
algorithm computes

Ri,t+1 = Rit +K
J

∑
j=1

(yi j−We(Rit ,R jt)) (7)

where the value of K may be chosen or optimized to reflect the likely change
in team ability over time. Essentially (7) updates a team’s rating by an amount
that depends on the team’s performance (the yi j) relative to an estimate of the
expected score (the We(Rit ,R jt)). The value K can be understood as the magnitude
of the contribution of match results relative to the pre-event rating; large values
of K correspond to greater weight placed on match results relative to the pre-
event rating, and low values of K connote greater emphasis on the team’s pre-
event rating. In some implementations of the Elo system, the value K depends on
the team’s pre-event rating, with larger values of K set for weaker ratings. This
application of large K for weaker teams generally assumes that weaker teams have
less stable strength and are more likely to change in ability.

Initial ratings by first-time teams in the Elo system are typically set in one
of two ways. One approach is to estimate the team’s rating by choosing a default
starting rating Ri0, and then updating a rating using a large value of K. This is the
approach implemented in the PlayerRatings R library described by Stephenson
and Sonas (2016) in its implementation of the Elo system. An alternative ap-
proach, sometimes used in organized chess, is to compute a rating as a maximum
likelihood estimate (e.g., for a Bradley-Terry model) but treating the opponents’
pre-event ratings as known in advance. Once an initial rating is computed, then
the ordinary Elo updating formula in (7) would apply thereafter.

2.5. Glicko rating system

The Glicko rating system (Glickman, 1999) was to our knowledge the first
rating system set in a Bayesian framework. Unlike Elo’s system in which a sum-
mary of a team’s current strength is a parameter estimate, the Glicko system sum-
marizes each team’s strength as a probability distribution. Before a rating period,
each team has a normal prior distribution of their playing strength. Match out-
comes are observed during the rating period, and an approximating normal distri-
bution to the posterior distribution is determined. Between rating periods, unob-
served innovations are assumed to each team’s strength parameter. Such assumed
innovations result in an increase in the variance of the posterior distribution to ob-
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tain the prior distribution for the next rating period. West et al. (1985), Glickman
(1993) and Fahrmeir and Tutz (1994) describe Bayesian inference for models that
are dynamic extensions of the Bradley-Terry and Thurstone-Mosteller models.
The Glicko system was developed as approximate Bayesian updating procedure
that linearizes the full Bayesian inferential approach.

A summary of the Glicko system is as follows. At the start of rating period t,
team i has prior distribution of strength parameter θit

θit ∼ N(µit ,σ
2
it ). (8)

As before, assume team i plays against J opposing teams in the rating period, each
indexed by j = 1, . . . ,J. The Glicko updating algorithm computes

µi,t+1 = µit +
q

1/σ2
it +1/d2

J

∑
j=1

g(σ jt)(yi j−Ei j) (9)

σi,t+1 =

(
1

σ2
it
+

1
d2

)−1

+ c2

where q = log(10)/400, and

g(σ) =
1√

1+3q2σ2/π2
(10)

Ei j =
1

1+10−g(σ jt)(µit−µ jt)/400

d2 =

(
q2

J

∑
j=1

g(σ jt)
2Ei j(1−Ei j)

)−1

,

and where c2 is a constant that indicates the increase in the posterior variance at the
end of the rating period to obtain the prior variance for the next rating period. The
computations in Equation (9) are performed simultaneously for all teams during
the rating period.

Unlike many implementations of the Elo system, the Glicko system requires
no special algorithm for initializing teams’ ratings. A prior distribution is as-
sumed for each team typically with a common mean for all teams first entering
the system, and with a large variance (σ2

i1) to account for the initial uncertainty in
a team’s strength. The updating formulas in Equation (9) then govern the change
from the prior distribution to the approximate normal distribution.
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By accounting for the uncertainty in team’s strength through a prior distribu-
tion, the computation recognizes different levels of reliability of strength estima-
tion. For example, suppose two teams compete that have the same mean strength,
but one team has a small prior variance and the other has a large prior variance.
Suppose further that the team with the large prior variance wins the match. Under
the Elo system, the winning team would have a mean strength increase that equals
the mean strength decrease by the losing team. Under the Glicko system, a dif-
ferent dynamic takes place. Because the winning team has a high prior variance,
the result of the match outcome has potentially great impact on the distribution of
team strength resulting in a large mean increase. For the losing team with the low
prior variance, the drop in mean strength is likely to be small because the team’s
ability is already reliably estimated and little information is gained from a loss to
a team with a large prior variance. Thus, the winning team would likely have a
mean strength increase that was large, while the losing team would have a mean
strength decrease that was small. As of this writing, the Glicko system is used in
a variety of online gaming leagues, including chess.com.

2.6. Glicko-2 rating system

The Glicko system was developed under the assumption that strengths evolve
over time through an auto-regressive normal process. In many situations, in-
cluding games and sports involving young competitors, competitive ability may
improve in sudden bursts. This has been studied in the context of creative pro-
ductivity, for example, in Simonton (1997). These periods of improvement are
quicker than can be captured by an auto-regressive process. The Glicko-2 sys-
tem (Glickman, 2001) addresses this possibility by assuming that team strength
follows a stochastic volatility model (Jacquier et al., 1994). In particular, Equa-
tion (5) changes by assuming εit ∼N(0,σ2

t ), that is, the innovation variance σ2
t is

time-dependent. The Glicko-2 system assumes

logσ
2
t = logσ

2
t−1 +νt (11)

where νt ∼ N(0,τ2) and where τ is the volatility parameter.
The updating process for the Glicko-2 system is similar to the Glicko system,

but requires iterative computation rather than involving only direct calculations
like the Glicko system. The details of the computation are described in Glickman
(2001). The Glicko-2 system, like the Glicko system, has been in use for various
online gaming leagues, as well as for over-the-board chess in the Australian Chess
Federation.
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2.7. Stephenson rating system

In 2012, the data prediction web site kaggle.com hosted the FIDE/Deloitte
Chess Rating Challenge in which participants competed in creating a practical
chess rating system for possible replacement of the current world chess federation
system. The winner of the competition was Alec Stephenson, who subsequently
implemented and described the details of his algorithm in Stephenson and Sonas
(2016).

The Stephenson system is closely related to the Glicko system, but includes
two main extra parameters. First, a parameter is included that accounts for the
strengths of the opponents, regardless of the results against them. A rationale for
the inclusion of the opponents’ strengths is that in certain types of tournaments
in which teams compete against those with similar cumulative scores, such as
knockout or partial elimination tournaments, information about a team’s ability
can be inferred by the strength of the opponents. Second, the Stephenson system
includes a “drift” parameter that increases a team’s mean rating just from having
competed in an event. The inclusion of a positive drift can be justified by the
notion that teams who choose to compete are likely to be improving.

The mean update formula for the Stephenson system can be written as

µi,t+1 = µit +
q

1/σ2
it +1/d2

J

∑
j=1

g(σ jt)(yi j−Ei j +β )+λ (µ̄t −µit) (12)

where µ̄t = J−1
∑

J
j=1 µ jt , the average pre-event mean strength of the J opponents

during period t, β is a drift parameter, and λ is a parameter which multiplies the
difference in the average opponents’ strength from the team’s pre-period strength.
An implementation of Stephenson’s system can be found in Stephenson and Sonas
(2016).

3. Data and ratings implementation

Women’s beach volleyball game data and end-of-year rankings were down-
loaded from http://bvbinfo.com/, an online database of international vol-
leyball tournament results going back to 1970. All match results from FIVB-
sanctioned tournaments from the years 2007-2015 were compiled, keeping record
of the two teams involved in a match, the winner of the match, and the date of the
match. We used match data from 2007-2014 to construct ratings from the four
probabilistic rating systems, leaving match outcomes during 2015 for validation.

The data set consisted of 12,241 match game results. For the 2007-2014
period in which the rating systems were developed, a total of 10,814 matches
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were included, leaving 1427 match results in 2015 for validation. The matches
were played by a total of 1087 unique teams. For our analyses, we considered a
single athlete who partnered with two different players as two entirely different
teams. This is a conservative assumption for our analyses because we treat the
same player on two different teams as independent. However, this assumption can
be justified by acknowledging that different levels of synergy may exist between
player pairs.

During the 2007-2015 period, 72 teams played in at least 100 matches. The
greatest number of matches any player pair competed in our data set was 550
times. At the other extreme, 243 teams competed exactly once in the study period.

The probabilistic rating systems described in Section 2 were implemented in
the R programming language (R Core Team, 2016). The core functions to perform
rating updates of the Elo, Glicko and Stephenson systems were implemented in
the PlayerRatings library (Stephenson and Sonas, 2016). We implemented the
Glicko-2 system manually in R.

We optimized the system parameters of the probabilistic rating systems in the
following manner. Matches from 2007-2014 were grouped into rating periods of
3-month periods (January-March 2007, April-June 2007, . . ., October-December
2014) for a total of 32 rating periods. The period lengths were chosen so that
team strengths within rating periods were likely to remain relatively constant, but
with the possibility of change in ability between periods. Given a set of candidate
system parameters for a rating system, we ran the rating system for the full eight
years of match results. While updating the ratings sequentially over the 32 peri-
ods, we computed a predictive discrepancy measure for each match starting with
month 25, and averaged the discrepancy measure over all matches from month 25
through 32. That is, the first 75% of the rating periods served as a “burn-in” for
the rating algorithms, and then the remaining 25% served as the test sample.

The match-specific predictive discrepancy for a match played between teams
i and j was

−(yi j log p̂i j +(1− yi j) log(1− p̂i j)) (13)

where yi j is the binary match outcome, and p̂i j is the expected outcome of the
match based on the pre-period ratings of teams i and j. This criterion is a constant
factor of the binomial deviance contribution for the validation data. This partic-
ular choice has been used to assess predictive validity in Glickman (1999) and
Glickman (2001). It is also a commonly used criterion for prediction accuracy
(called “logarithmic loss,” or just log loss) on prediction competition web sites
such as kaggle.com.
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For the Elo system, p̂i j was the winning expectancy defined in (6). For the
Glicko, Glicko-2 and Stephenson systems, the expected outcome calculation ac-
counts for the uncertainty in the ratings. The expected outcome is therefore com-
puted as an approximation to the posterior probability that team i defeats team j.
Glickman (1999) demonstrated that a good approximation to the posterior proba-
bility is given by

p̂i j =
1

1+10−g(
√

σ2
i +σ2

j )(µi−µ j)/400
(14)

where the function g is defined as in (10).
The optimizing choice of the system parameters is the set that minimizes the

average discrepancy over the validation sample. We determine the optimal param-
eters through a the Nelder-Mead algorithm (Nelder and Mead, 1965), an iterative
numerical derivative-free optimization procedure. The algorithm is implemented
in the R function optim.

4. Results

The probabilistic rating systems were optimized as described in Section 3.
The following parameter values were determined to optimize the mean predictive
discrepancy in (13):

Elo: K = 19.823

Glicko: σ1 = 200.074 (common standard deviation at initial rating period), c =
27.686

Glicko-2: τ2 = 0.000177, σ1 = 216.379, c = 30.292

Stephenson: σ1 = 281.763, c = 10.378, β = 3.970, λ = 2.185

The resulting mean predictive discrepancy across the test set of matches is re-
ported in Table 2. In addition to the mean predictive discrepancy measure, we
also calculated a misclassification rate of match results for the 25% test sample.
For each match in the test sample, a result was considered misclassified if the
expected score of the match was greater than 0.5 for the first team in the pair ac-
cording to the pre-match ratings and the first team lost, or if the expected score
was less than 0.5 and the first team won. Matches involving teams with equal
ratings were ignored in this computation.

The table indicates that the Elo system had the worst predictive accuracy
in terms of log loss, followed by the Glicko and Glicko-2 systems which had
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Rating 10,000× Misclassification
System mean log-loss Rate

Elo 2652.55 0.318
Glicko 2623.03 0.319

Glicko-2 2622.08 0.319
Stephenson 2590.72 0.310

Table 2: Rating system summaries based on optimized parameter values.
The first column reports 10,000× the mean log-loss score from the 25% test
sample. The second column reports the fraction of matches in which the re-
sult went the opposite of the favored team according to the pre-match ratings.

comparable predictive accuracy. The accuracy based on the misclassification rate
were similar for Elo, Glicko and Glicko-2. The Stephenson system had the best
predictive performance of the four systems with a lower mean log-loss, and a
slightly lower misclassification rate.

The rating systems were assessed for calibration accuracy as shown in Fig-
ure 1. For each rating system, we sorted the pre-match predicted probabilities for
the 25% test sample relative to the higher-rated team (so that the winning prob-
ability was 0.5 or greater). These probabilities were divided into 10 consecutive
groups. Within each group, we computed the average result for the higher rated
team along with the endpoints of a 95% confident interval. Each confidence in-
terval along with the sample mean across the 10 groups was plotted as a vertical
segment. If a rating system were well-calibrated, the pattern of confidence inter-
vals would fall on the line y = x (shown as diagonal lines on the figure).

Generally, the rating systems are all reasonably well-calibrated. In the case
of Elo, Glicko and Glicko-2, small rating differences tend to underestimate the
better team’s performance, and in all cases large rating differences tend to over-
estimate performances (indicated by the right-most confidence interval being en-
tirely below the diagonal line). Elo has the least calibration consistency, with the
fewest confidence intervals intersecting the diagonal line, and Glicko, Glicko-2
and Stephenson having the best calibration.

Tables 3 through 7 show the rankings at the end of 2014 of women’s beach
volleyball teams according to the different rating systems. Table 3 ranks teams
according to total FIVB points (the sum over the two players in the team) while
the ranks for the remaining tables are based on the order of the probabilistically-
determined ratings.
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Rank Team Country Points
1 Maria Antonelli/Juliana Felisberta Brazil 6740
2 Agatha Bednarczuk/Barbara Seixas Brazil 5660
3 April Ross/Kerri Walsh Jennings United States 5420
4 Fan Wang/Yuan Yue China 4950
5 Madelein Meppelink/Marleen Van Iersel Netherlands 4640
6 Katrin Holtwick/Ilka Semmler Germany 4610
7 Karla Borger/Britta Buthe Germany 4580
8 Kristyna Kolocova/Marketa Slukova Czech Republic 4420
9 Elsa Baquerizo/Liliana Fernandez Spain 4360

10 Marta Menegatti/Viktoria Orsi Toth Italy 4140
11 Ana Gallay/Georgina Klug Argentina 3920
12 Talita Antunes/Larissa Franca Brazil 3620
13 Carolina Salgado/Maria Clara Salgado Brazil 3400
14 Maria Prokopeva/Evgeniya Ukolova Russia 3220
15 Natalia Dubovcova/Dominika Nestarcova Slovak Republic 3000

Table 3: Top 15 teams at the end of 2014 according to FIVB points.

The probabilistic rating systems produce rank orders that have notable dif-
ferences with the FIVB rank order. The team of Ross/Walsh Jennings is always
either in first or second place on the probabilistic lists, but is third on the FIVB
list. The top 10 teams on the FIVB list do appear on at least one probabilistic
rating list, but it is worth noting that a non-trivial number of teams on the prob-
abilistic rating lists do not appear on the FIVB top 15 list. For example, a team
like Antunes/Franca are consistently in the top of the probabilistic rating systems,
but is only ranked 30 in the FIVB rankings. This suggests that this team is having
strong head-to-head results despite not achieving the tournament success of the
top teams. The Elo top 15 list even includes a team ranked 83 on the FIVB list.

We compared the predictive accuracy of the four rating systems along with
the FIVB system in the following manner using match results from 2015. A total
of 1427 matches were recorded in 2015. Of the 1427 matches, we used 787 that
involved teams having FIVB rankings from 2014. Only 183 teams appeared on
the 2014 end-of-year FIVB list. In separate analyses, we used 903 that were
among teams with ratings from 2014 (the remaining 1427− 903 = 524 matches
involved at least one new team). The result of each match played in 2015 was
considered misclassified if the team with the higher rank from 2014 lost the match.
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Rating Team Country FIVB Rank
1850 April Ross/Kerri Walsh Jennings United States 3
1839 Talita Antunes/Larissa Franca Brazil 12
1819 Talita Antunes/Taiana Lima Brazil 30
1775 Kristyna Kolocova/Marketa Slukova Czech Republic 8
1773 Maria Antonelli/Juliana Felisberta Brazil 1
1744 Laura Ludwig/Kira Walkenhorst Germany 32
1727 Agatha Bednarczuk/Barbara Seixas Brazil 2
1727 Katrin Holtwick/Ilka Semmler Germany 6
1700 Carolina Salgado/Maria Clara Salgado Brazil 13
1687 Madelein Meppelink/Marleen Van Iersel Netherlands 5
1686 Fernanda Alves/Taiana Lima Brazil 26
1674 Karla Borger/Britta Buthe Germany 7
1672 Elsa Baquerizo/Liliana Fernandez Spain 9
1665 Fan Wang/Yuan Yue China 4
1662 Doris Schwaiger/Stefanie Schwaiger Austria 83

Table 4: Top 15 teams at the end of 2014 according to Elo ratings.

Table 8 summarizes the misclassification rates for all five rating systems. The
table indicates that the FIVB has the worst misclassification rate with greater than
35% of the matches incorrectly predicted. The Elo system is not much better, but
Glicko, Glicko-2 and Stephenson have rates as low as 31-32%.

In addition to exploring the relationship between match outcomes in 2015
and a binary indicator of whether a team was more highly ranked in a given rating
system, we investigated the relationship between match outcomes and the dif-
ference in rank on the 2014 lists. For this analysis, we included only matches
involving teams that were in the top 200 in the end-of-2014 ranked lists from each
rating system. This decision was to prevent the probabilistic rating systems in-
corporating matchesinvolving teams that were far down the list and would result
in a poor comparison to the analysis of matches involving FIVB-ranked teams.
For each match, we computed the difference between the rank of the winner and
loser. Boxplots of the match-specific rank differences appear in Figure 2. The fig-
ure shows that the four probabilistic rating system produce distributions of rank
differences that are roughly comparable, with the Stephenson system having a
slightly higher median rank difference for won matches than the other probabilis-
tic systems. The FIVB system by comparison produces a substantially smaller
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Rating Team Country FIVB Rank
1918 April Ross/Kerri Walsh Jennings United States 3
1903 Talita Antunes/Larissa Franca Brazil 12
1847 Talita Antunes/Taiana Lima Brazil 30
1763 Maria Antonelli/Juliana Felisberta Brazil 1
1748 Laura Ludwig/Kira Walkenhorst Germany 32
1747 Kristyna Kolocova/Marketa Slukova Czech Republic 8
1730 Agatha Bednarczuk/Barbara Seixas Brazil 2
1716 Madelein Meppelink/Marleen Van Iersel Netherlands 5
1714 Carolina Salgado/Maria Clara Salgado Brazil 13
1703 Fernanda Alves/Taiana Lima Brazil 26
1691 Katrin Holtwick/Ilka Semmler Germany 6
1684 Xinyi Xia/Chen Xue China 27
1674 Elsa Baquerizo/Liliana Fernandez Spain 9
1656 Karla Borger/Britta Buthe Germany 7
1652 Laura Ludwig/Julia Sude Germany 24

Table 5: Top 15 teams at the end of 2014 according to Glicko ratings.

median rank difference across the match winners. A 95% confidence interval for
the mean rank difference based on FIVB 2014 rankings was (10.8,15.5) whereas
for the Stephenson 2014 rankings the 95% confidence interval was (18.3,30.5).
Based on simple two-sample t-tests, the mean rank differences between the FIVB
and any of the probabilistic rating system ranks were significantly smaller at very
low levels even conservatively accounting for test multiplicity.

5. Discussion and conclusion

The four probabilistic rating systems considered here appear to demonstrate
solid performance in measuring women’s beach volleyball team strength. The rat-
ing systems evidence roughly 31-32% misclassification rates for predicting future
matches (the Elo system is slightly higher). By comparison, the FIVB point-based
system has a greater than 35% misclassification rate. Given the fractional differ-
ences in misclassification rates among the probabilistic systems, the 4% misclas-
sification difference is notable. At a more fundamental level, the rating systems
provide a means for estimating probabilities of match outcomes, a calculation
not prescribed by the FIVB system. Because the focus of the probabilistic sys-
tems is in forecasting match outcomes, the ranked lists differ in substantive ways
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Rating Team Country FIVB Rank
1927 April Ross/Kerri Walsh Jennings United States 3
1914 Talita Antunes/Larissa Franca Brazil 12
1850 Talita Antunes/Taiana Lima Brazil 30
1766 Maria Antonelli/Juliana Felisberta Brazil 1
1754 Kristyna Kolocova/Marketa Slukova Czech Republic 8
1754 Laura Ludwig/Kira Walkenhorst Germany 32
1734 Agatha Bednarczuk/Barbara Seixas Brazil 2
1720 Madelein Meppelink/Marleen Van Iersel Netherlands 5
1716 Carolina Salgado/Maria Clara Salgado Brazil 13
1708 Fernanda Alves/Taiana Lima Brazil 26
1693 Katrin Holtwick/Ilka Semmler Germany 6
1684 Xinyi Xia/Chen Xue China 27
1678 Elsa Baquerizo/Liliana Fernandez Spain 9
1658 Karla Borger/Britta Buthe Germany 7
1657 Laura Ludwig/Julia Sude Germany 24

Table 6: Top 15 teams at the end of 2014 according to Glicko-2 ratings.

from the FIVB list. For example, the number 1 team on the 2014 FIVB list, An-
tonelli/Felisberta, is not only ranked lower on the probabilistic lists than the team
Ross/Walsh-Jennings, but the estimated probability based on the probabilistic rat-
ing systems is that Ross/Walsh-Jennings would defeat Antonelli/Felisberta with
a probability of between 0.71 and 0.75 for the Glicko, Glicko-2 and Stephenson
systems.

Among the four probabilistic rating systems, the Stephenson system appears
to slightly outperform the other three. A curious feature of this system is that a
team’s rating increases due merely to competing regardless of the result. While
this feature seems to be predictive of better performance, which may be an arti-
fact that teams who are improving tend to compete more frequently, it may be an
undesirable aspect of a system to be used on an ongoing basis to rate its teams.
Teams could manipulate their ratings by choosing to compete frequently regard-
less of their readiness to compete. Nonetheless, for the purpose of predicting
match outcomes, this system does the best out of the probabilistic methods we
have considered.

As mentioned previously, our approach to measuring women’s beach vol-
leyball team strength is conservative in the sense that we treat teams that share
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Rating Team Country FIVB Rank
2152 Talita Antunes/Larissa Franca Brazil 12
2105 April Ross/Kerri Walsh Jennings United States 3
2018 Talita Antunes/Taiana Lima Brazil 30
1915 Maria Antonelli/Juliana Felisberta Brazil 1
1900 Fernanda Alves/Taiana Lima Brazil 26
1885 Laura Ludwig/Kira Walkenhorst Germany 32
1879 Madelein Meppelink/Marleen Van Iersel Netherlands 5
1859 Agatha Bednarczuk/Barbara Seixas Brazil 2
1843 Kristyna Kolocova/Marketa Slukova Czech Republic 8
1826 Laura Ludwig/Julia Sude Germany 24
1823 Carolina Salgado/Maria Clara Salgado Brazil 13
1818 Xinyi Xia/Chen Xue China 27
1810 Katrin Holtwick/Ilka Semmler Germany 6
1781 Elsa Baquerizo/Liliana Fernandez Spain 9
1769 Marta Menegatti/Viktoria Orsi Toth Italy 10

Table 7: Top 15 teams at the end of 2014 according to Stephenson ratings.

a player as entirely distinct. For example, the teams Antunes/Franca and An-
tunes/Lima who share Talita Antunes are both high on the probabilistic rating lists.
In the probabilistic rating systems, we treated these two teams as separate com-
petitors, and did not take advantage of Antunes being a member on both teams.
Rating systems for beach volleyball could arguably be improved by accounting for
the players involved in teams. Indeed, the FIVB system focuses on the players’
FIVB points in determining a team’s points, and this is an important difference in
the way rankings were constructed. We argue, however, that it is not obvious how
to account for individual player strength contribution in the construction of team
abilities within a probabilistic system. One attempt might be to consider a team’s
ability to be the average of the two players’ ratings of the team. This approach has
been used, for example, in Herbrich et al. (2007). On the other hand, in a game
like volleyball it may be that the team strength is more determined by the skill of
the worse player given that the worse player is the source of vulnerability on the
team. This is clearly an area for further exploration and is beyond the scope of
this paper. However, even treating teams who share a player as entirely distinct
still leads to the probabilistic rating systems outperforming the FIVB system in
predicting future performance.
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Rating Misclassification
System Rate

FIVB 0.3545
Elo 0.3466

Glicko 0.3234
Glicko-2 0.3200

Stephenson 0.3134

Table 8: Misclassification rates for matches played in 2015 based on rank
orders at the end of 2014

Should the FIVB be considering a probabilistic system as a replacement to the
existing point-accumulation system? An argument can be made that it should be.
The point-based systems were developed in a setting where it was important for
the ranking system to require only simple arithmetic to perform the computation.
With the stakes being so high for whether teams are invited to elite tournaments,
it is arguably more important to rank teams based on systems with a probabilistic
foundation than to keep the ranking computation simple. Such a move would
involve a change in culture and a clarification of the goals of a ranking system,
but our feeling is that a probabilistic system is more consistent with the goals set
for identifying the best women’s beach volleyball teams.
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Figure 1: Plots of average score and 95% confidence intervals computed
from the 25% test sample for the favored team against the predicted proba-
bility of winning for each of the four probabilistic rating systems.
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Figure 2: Boxplots of the distribution of differences in 2014 rankings for
each match played in 2015 relative to the winner of each match. A large rank
difference indicates that the winner of a match had a much higher 2014 rank
than the loser.
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